cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052680 Expansion of e.g.f. (1-2*x)/(1-4*x+2*x^2).

Original entry on oeis.org

1, 2, 12, 120, 1632, 27840, 570240, 13628160, 372234240, 11437977600, 390516940800, 14666390323200, 600890263142400, 26670379902566400, 1274817218759884800, 65287473566515200000, 3566486043252228096000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n)*(&+[Binomial(n, 2*k)*2^(n-k): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Jun 10 2022
    
  • Maple
    spec := [S,{S=Sequence(Union(Z,Prod(Z,Sequence(Union(Z,Z)))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[(1-2x)/(1-4x+2x^2),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jan 28 2019 *)
    Table[n!*2^(n/2)*ChebyshevT[n, Sqrt[2]], {n,0,50}] (* G. C. Greubel, Jun 10 2022 *)
  • SageMath
    [2^(n/2)*factorial(n)*chebyshev_T(n, sqrt(2)) for n in (0..50)] # G. C. Greubel, Jun 10 2022

Formula

E.g.f.: (1 - 2*x)/(1 - 4*x + 2*x^2).
D-finite with Recurrence: a(0)=1, a(1)=2, a(n+2) = 4*(n+2)*a(n+1) - 2*(2 +3*n +n^2)*a(n).
a(n) = (n!/2)*Sum_{alpha=RootOf(1 - 4*Z + 2*Z^2)} alpha^(-n).
a(n) = n!*A006012(n). - R. J. Mathar, Nov 27 2011
From G. C. Greubel, Jun 10 2022: (Start)
a(2*n) = (2*n)! * 2^(n-1)*A002203(2*n).
a(2*n+1) = (2*n+1)! * 2^(n+1)*A000129(2*n+1).
a(n) = 2^(n/2) * n! * ChebyshevT(n, sqrt(2)). (End)