A052693 Expansion of e.g.f. (1-x)/(1-3*x+x^3).
1, 2, 12, 102, 1176, 16920, 292320, 5891760, 135717120, 3517032960, 101268921600, 3207514464000, 110828037196800, 4148515981209600, 167232459621427200, 7222900141416960000, 332760193091149824000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..375
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 642
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( (1-x)/(1-3*x+x^3) ))); // G. C. Greubel, Jun 01 2022 -
Maple
spec := [S,{S=Sequence(Union(Z,Prod(Z,Union(Z,Sequence(Z)))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
With[{nn=20},CoefficientList[Series[(1-x)/(1-3x+x^3),{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Dec 17 2012 *)
-
SageMath
@CachedFunction def A052536(n): if (n<3): return factorial(n+1) else: return 3*A052536(n-1) - A052536(n-3) def A052693(n): return factorial(n)*A052536(n) [A052693(n) for n in (0..40)] # G. C. Greubel, Jun 01 2022
Formula
E.g.f.: (1-x)/(1-3*x+x^3).
Recurrence: a(0)=1, a(1)=2, a(2)=12 a(n+3) = 3*(n+3)*a(n+2) - (n+1)*(n+2)*(n+3)*a(n).
a(n) = (n!/9)*Sum_{alpha=RootOf(1 -3*Z +Z^3)} (2 - alpha + alpha^2)*alpha^(-1-n).
a(n) = n! * A052536(n). - G. C. Greubel, Jun 01 2022