cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052706 A simple context-free grammar: convolution square of A001002.

Original entry on oeis.org

0, 0, 1, 2, 7, 26, 105, 444, 1944, 8734, 40040, 186550, 880750, 4204508, 20260498, 98419392, 481442805, 2369551218, 11725590555, 58303117680, 291151523355, 1459590130350, 7342906908645, 37058911816680, 187579329483780, 952006706210196, 4843566974043900
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. A001002.

Programs

  • Maple
    spec := [S,{C = Union(S,B,Z),B = Prod(S,C),S = Prod(C,C)},unlabeled]: seq(combstruct[count](spec,size = n), n = 0..20);
  • Mathematica
    Flatten[{0,0,Table[2*Sum[Binomial[k,n-k-2]*Binomial[n+k-1,n-1],{k,0,n-2}]/n,{n,2,20}]}] (* Vaclav Kotesovec, Oct 09 2012 *)
  • Maxima
    a(n):=if n<2 then 0 else (2*sum(binomial(k,n-k-2)*binomial(n+k-1,n-1),k,0,n-2))/n; /* Vladimir Kruchinin, May 19 2012 */
    
  • PARI
    a(n) = if(n>1,2*sum(k=0,n-2,binomial(k,n-k-2)*binomial(n+k-1,n-1))/n,0) \\ Jason Yuen, Aug 12 2024

Formula

G.f.: RootOf(-_Z+_Z^2+_Z^3+x)^2.
Recurrence: {a(1) = 0, a(2) = 1, a(3) = 2, (6-27*n+27*n^2)*a(n)+(6+65*n+49*n^2)*a(n+1)+(67*n+66+17*n^2)*a(n+2)+(-5*n^2-25*n-30)*a(n+3)}.
a(n) = 2*(Sum_{k=0..n-2} binomial(k,n-k-2)*binomial(n+k-1,n-1))/n, n>1, a(0)=a(1)=0. - Vladimir Kruchinin, May 19 2012
a(n) ~ 3^(3*n-5/2)/(sqrt(2*Pi)*5^(n-1/2)*n^(3/2)). - Vaclav Kotesovec, Oct 09 2012