A052706 A simple context-free grammar: convolution square of A001002.
0, 0, 1, 2, 7, 26, 105, 444, 1944, 8734, 40040, 186550, 880750, 4204508, 20260498, 98419392, 481442805, 2369551218, 11725590555, 58303117680, 291151523355, 1459590130350, 7342906908645, 37058911816680, 187579329483780, 952006706210196, 4843566974043900
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Nancy S. S. Gu, Nelson Y. Li, and Toufik Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 661
Crossrefs
Cf. A001002.
Programs
-
Maple
spec := [S,{C = Union(S,B,Z),B = Prod(S,C),S = Prod(C,C)},unlabeled]: seq(combstruct[count](spec,size = n), n = 0..20);
-
Mathematica
Flatten[{0,0,Table[2*Sum[Binomial[k,n-k-2]*Binomial[n+k-1,n-1],{k,0,n-2}]/n,{n,2,20}]}] (* Vaclav Kotesovec, Oct 09 2012 *)
-
Maxima
a(n):=if n<2 then 0 else (2*sum(binomial(k,n-k-2)*binomial(n+k-1,n-1),k,0,n-2))/n; /* Vladimir Kruchinin, May 19 2012 */
-
PARI
a(n) = if(n>1,2*sum(k=0,n-2,binomial(k,n-k-2)*binomial(n+k-1,n-1))/n,0) \\ Jason Yuen, Aug 12 2024
Formula
G.f.: RootOf(-_Z+_Z^2+_Z^3+x)^2.
Recurrence: {a(1) = 0, a(2) = 1, a(3) = 2, (6-27*n+27*n^2)*a(n)+(6+65*n+49*n^2)*a(n+1)+(67*n+66+17*n^2)*a(n+2)+(-5*n^2-25*n-30)*a(n+3)}.
a(n) = 2*(Sum_{k=0..n-2} binomial(k,n-k-2)*binomial(n+k-1,n-1))/n, n>1, a(0)=a(1)=0. - Vladimir Kruchinin, May 19 2012
a(n) ~ 3^(3*n-5/2)/(sqrt(2*Pi)*5^(n-1/2)*n^(3/2)). - Vaclav Kotesovec, Oct 09 2012