cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A378289 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n+r+k,r) * binomial(r,n-r)/(n+r+k) for k > 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 10, 0, 1, 4, 12, 26, 38, 0, 1, 5, 18, 49, 105, 154, 0, 1, 6, 25, 80, 210, 444, 654, 0, 1, 7, 33, 120, 363, 927, 1944, 2871, 0, 1, 8, 42, 170, 575, 1672, 4191, 8734, 12925, 0, 1, 9, 52, 231, 858, 2761, 7810, 19305, 40040, 59345, 0
Offset: 0

Views

Author

Seiichi Manyama, Nov 21 2024

Keywords

Examples

			Square array begins:
  1,   1,    1,    1,    1,     1,     1, ...
  0,   1,    2,    3,    4,     5,     6, ...
  0,   3,    7,   12,   18,    25,    33, ...
  0,  10,   26,   49,   80,   120,   170, ...
  0,  38,  105,  210,  363,   575,   858, ...
  0, 154,  444,  927, 1672,  2761,  4290, ...
  0, 654, 1944, 4191, 7810, 13325, 21385, ...
		

Crossrefs

Columns k=0..3 give A000007, A001002, A052706(n+2), A052703(n+3).

Programs

  • PARI
    T(n, k, t=2, u=1) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k)));
    matrix(7, 7, n, k, T(n-1, k-1))

Formula

G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x * A_k(x)^(2/k) * (1 + x * A_k(x)^(1/k)) )^k for k > 0.
G.f. of column k: B(x)^k where B(x) is the g.f. of A001002.
B(x)^k = B(x)^(k-1) + x * B(x)^(k+1) + x^2 * B(x)^(k+2). So T(n,k) = T(n,k-1) + T(n-1,k+1) + T(n-2,k+2) for n > 1.

A052703 A simple context-free grammar: convolution cube of A001002.

Original entry on oeis.org

0, 0, 0, 1, 3, 12, 49, 210, 927, 4191, 19305, 90285, 427570, 2046324, 9881862, 48090824, 235619133, 1161257580, 5753365015, 28638093270, 143148398085, 718242481770, 3616135914375, 18263111515740, 92500790125770, 469737499557222, 2391192703656054, 12199557377107450
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Maple
    spec := [S,{C=Prod(B,B),B=Union(S,C,Z),S=Prod(B,C)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • PARI
    my(N=30, x='x+O('x^N)); concat([0, 0, 0], Vec(serreverse(x-x^2-x^3)-serreverse(x-x^2-x^3)^2-x)) \\ Seiichi Manyama, Nov 22 2024
    
  • PARI
    a(n) = 3*sum(k=0, n-3, binomial(n+k, k)*binomial(k, n-3-k)/(n+k)); \\ Seiichi Manyama, Nov 22 2024

Formula

G.f.: RootOf(-_Z+_Z^2+_Z^3+x)-RootOf(-_Z+_Z^2+_Z^3+x)^2-x
Recurrence: {a(1)=0, a(2)=0, a(3)=1, a(4)=3, (30-135*n+135*n^2)*a(n)+(-130-107*n+29*n^2)*a(n+1)+(-281*n-198-91*n^2)*a(n+2)+(15*n^2+75*n+90)*a(n+3)}
From Seiichi Manyama, Nov 22 2024: (Start)
G.f.: (x*B(x))^3 where B(x) is the g.f. of A001002.
a(n) = 3 * Sum_{k=0..n-3} binomial(n+k,k) * binomial(k,n-3-k)/(n+k). (End)
a(n) ~ 3^(3*n - 5/2) / (sqrt(Pi) * 2^(3/2) * n^(3/2) * 5^(n - 1/2)). - Vaclav Kotesovec, Nov 22 2024

Extensions

More terms from Seiichi Manyama, Nov 21 2024

A052729 A simple context-free grammar in a labeled universe.

Original entry on oeis.org

0, 0, 2, 12, 168, 3120, 75600, 2237760, 78382080, 3169393920, 145297152000, 7446479040000, 421880659200000, 26181558769766400, 1766275594501017600, 128700516232544256000, 10073126652104355840000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{B=Prod(S,C),S=Prod(C,C),C=Union(B,S,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    seq(2*add((n+k-1)!/(n-k-2)!/(2*k+2-n)!, k= ceil(n/2)-1..n-2),n=0..20);  # Mark van Hoeij, May 12 2013

Formula

E.g.f.: RootOf(-_Z+_Z^2+_Z^3+x)^2
Recurrence: {a(1)=0, a(2)=2, a(3)=12, (21*n-27*n^3-6)*a(n) +(-49*n^2-6-65*n)*a(n+1) +(-33-17*n)*a(n+2) +5*a(n+3) =0.
a(n) = n!*A052706(n). - R. J. Mathar, Oct 18 2013
Showing 1-3 of 3 results.