cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052711 Expansion of e.g.f. x*(1 - 2*x - sqrt(1-4*x))/2.

Original entry on oeis.org

0, 0, 0, 6, 48, 600, 10080, 211680, 5322240, 155675520, 5189184000, 194075481600, 8045310873600, 366061644748800, 18134130709094400, 971471287987200000, 55956746188062720000, 3448334483839365120000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Maple
    spec := [S,{C=Union(B,Z),B=Prod(C,C),S=Prod(B,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[x (1-2x-Sqrt[1-4x])/2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 05 2016 *)
    Table[n!*CatalanNumber[n-2] +Boole[n==1] -2*Boole[n==2], {n,0,30}] (* G. C. Greubel, May 30 2022 *)
  • SageMath
    [factorial(n)*catalan_number(n-2) + bool(n==1)/2 - 2*bool(n==2) for n in (0..30)] # G. C. Greubel, May 30 2022

Formula

D-finite with recurrence: a(1)=0, a(2)=0, a(3)=6, a(4)=48, n*a(n+1) = 2*(n+1)*(2*n-3)*a(n).
From R. J. Mathar, Oct 18 2013: (Start)
a(n) = n!*A000108(n-2).
a(n) = A052717(n), n>2. (End)
G.f.: x*(1 - 4*x - 2F0([-1/2,2], [], 4*x))/2. - R. J. Mathar, Jan 25 2020