A052713 Expansion of e.g.f. (1-sqrt(1-8*x))/2.
0, 2, 8, 96, 1920, 53760, 1935360, 85155840, 4428103680, 265686220800, 18066663014400, 1373066389094400, 115337576683929600, 10611057054921523200, 1061105705492152320000, 114599416193152450560000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..330
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 669
Crossrefs
Programs
-
Maple
spec := [S,{C=Union(B,Z),B=Prod(S,S),S=Union(Z,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
Table[n!*2^n*CatalanNumber[n-1] + Boole[n==0], {n,0,30}] (* G. C. Greubel, May 29 2022 *)
-
SageMath
[2^n*factorial(n)*catalan_number(n-1) + bool(n==0)/2 for n in (0..30)] # G. C. Greubel, May 29 2022
Formula
D-finite with recurrence: a(1)=2, a(n+1) = 4*(2*n -1)*a(n).
a(n+1) = 1/4*8^(n+1)*Gamma(n+1/2)/Pi^(1/2)
a(n+1) = ((2*n)!/n!)*2^(n+1). - Zerinvary Lajos, Sep 25 2006
a(n) = n!*A025225(n). - R. J. Mathar, Oct 18 2013
G.f.: (1- 2F0([1,-1/2], [], 8*x))/2. - R. J. Mathar, Jan 25 2020
Comments