A052764 E.g.f.: -1/4*LambertW(-4*x).
0, 1, 8, 144, 4096, 160000, 7962624, 481890304, 34359738368, 2821109907456, 262144000000000, 27197360938418176, 3116402981210161152, 390877006486250192896, 53265296773103187132416, 7836416409600000000000000, 1237940039285380274899124224, 208998227690370098316628197376
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..320
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 721
Programs
-
Maple
spec := [S,{B=Set(S),S=Prod(Z,B,B,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
CoefficientList[Series[-1/4*LambertW[-4*x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
-
PARI
x='x+O('x^50); concat([0], Vec(serlaplace((-1/4)*lambertw(-4*x)))) \\ G. C. Greubel, Nov 07 2017
Formula
E.g.f.: -1/4*LambertW(-4*x).
For n>0, a(n) = 2^(2*n-2)*n^(n-1). - Vaclav Kotesovec, Sep 30 2013
a(n) = [x^n] x/(1 - 4*n*x). - Ilya Gutkovskiy, Oct 12 2017
Extensions
New name using e.g.f. by Vaclav Kotesovec, Sep 30 2013
Comments