cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052773 A simple grammar.

Original entry on oeis.org

1, 1, 5, 31, 229, 1832, 15583, 137791, 1255202, 11693697, 110905169, 1067181020, 10392861567, 102239342761, 1014484221699, 10141596951782, 102044286177390, 1032652191535027, 10503201188806574, 107313868098732336, 1100922685481490057, 11335843298568212815, 117111555943587032146, 1213575764038590524010
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Maple
    spec := [S,{S=Set(B),B=Prod(Z,S,S,S,S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
    # second Maple program:
    b:= proc(n) option remember; add(a(i)*a(n-i), i=0..n) end:
    g:= proc(n) option remember; add(b(i)*b(n-i), i=0..n) end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*g(d-1), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 24 2017
  • Mathematica
    b[n_] := b[n] = Sum[a[i]*a[n-i], {i, 0, n}];
    g[n_] := g[n] = Sum[b[i]*b[n-i], {i, 0, n}];
    a[n_] := a[n] = If[n==0, 1, Sum[DivisorSum[j, #*g[#-1]&]*a[n-j], {j, 1, n} ]/n];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 28 2017, after Alois P. Heinz *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));if(n==0,1,for(i=1,n, A=exp(sum(k=1,n,subst(x*A^4,x,x^k+x*O(x^n))/k)));polcoeff(A,n,x))} \\ Paul D. Hanna, Jul 13 2006

Formula

G.f.: A(x) = exp(A(x)^4*x + A(x^2)^4*x^2/2 + A(x^3)^4*x^3/3 +...), A(0)=1; also, A(x)^4 = sum_{n=0..inf} A052763(n+1)x^n. - Paul D. Hanna, Jul 13 2006
a(n) ~ c * d^n / n^(3/2), where d = 11.069962877759326312419302623317740386289... (see d(4) in A242249, or A052763) and c = 0.131073637348549764379358468465557... . - Vaclav Kotesovec, Mar 28 2017

Extensions

More terms from Paul D. Hanna, Jul 13 2006