A052791 3^(n-3)*n*(n-1)*(n-2).
0, 0, 0, 6, 72, 540, 3240, 17010, 81648, 367416, 1574640, 6495390, 25981560, 101328084, 386889048, 1450833930, 5356925280, 19514513520, 70252248672, 250273635894, 883318714920, 3091615502220, 10739295955080, 37050571045026, 127030529297232, 433058622604200, 1468633589701200
Offset: 0
Links
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 748
- Index entries for linear recurrences with constant coefficients, signature (12,-54,108,-81).
Crossrefs
Cf. A001815.
Programs
-
Maple
spec := [S,{B=Set(Z),S=Prod(Z,Z,Z,B,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
Range[0, 20]! CoefficientList[Series[(x Exp[x])^3, {x, 0, 20}], x] LinearRecurrence[{12,-54,108,-81},{0,0,0,6},30] (* Harvey P. Dale, Sep 02 2022 *)
-
PARI
a(n)=3^(n-3)*n*(n-1)*(n-2); /* Joerg Arndt, Sep 16 2012 */
Formula
E.g.f.: x^3*exp(x)^3
Recurrence: {a(1)=0, a(2)=0, a(3)=6, (-3*n-3)*a(n)+(-2+n)*a(n+1)}.
a(n) = n!*sum(i+j+k=n, ijk/(i!j!k!)) - Benoit Cloitre, Nov 11 2004
G.f.: 6*x^3 / (3*x-1)^4. - Colin Barker, Jun 04 2013
Extensions
Edited by N. J. A. Sloane, Dec 24 2010
Comments