A052805 If B is a collection in which there are C(n-1) [Catalan numbers, A000108] things with n points, a(n) is the number of subsets without repetition of B with a total of n points.
1, 1, 1, 3, 7, 21, 64, 204, 666, 2236, 7625, 26419, 92644, 328370, 1174234, 4231898, 15354424, 56042372, 205626906, 758021598, 2806143522, 10427671924, 38882984840, 145443260702, 545598228056, 2052086677666, 7736986142773, 29236241424977
Offset: 0
Links
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 766
Programs
-
Maple
spec := [S,{C=Sequence(B),B=Prod(C,Z),S=PowerSet(B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
ClearAll[a]; b[k_] := Sum[ (-1)^(k/d + 1)*Binomial[2*d - 2, d - 1], {d, Divisors[k]}]; a[0] = 1; a[n_] := a[n] = (1/n)*Sum[a[n - k]*b[k], {k, 1, n}]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Oct 08 2012, after Vladeta Jovovic *)
-
PARI
a(n)=local(A); if(n<1,!n,A=sum(k=1,n,(2*k-2)!/k!/(k-1)!*x^k,x*O(x^n)); polcoeff(exp(sum(k=1,n,-(-1)^k*subst(A,x,x^k)/k)),n))
Formula
a(n)=(1/n)*Sum_{k=1..n} a(n-k)*b(k), n>0, a(0)=1, b(k)=Sum_{d|k} (-1)^(k/d+1)*binomial(2*d-2, d-1). - Vladeta Jovovic, Jan 17 2002
G.f. A(x)=exp(Sum_{k>0} -(-1)^k* C(x^k)/k) where C(x)=(1-sqrt(1-4x))/2= g.f. A000108 (offset 1).
G.f.: Product_{k>=1} (1+x^k)^(1/k*binomial(2*k-2, k-1)). - Vladeta Jovovic, Jan 17 2002
Comments