cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052805 If B is a collection in which there are C(n-1) [Catalan numbers, A000108] things with n points, a(n) is the number of subsets without repetition of B with a total of n points.

Original entry on oeis.org

1, 1, 1, 3, 7, 21, 64, 204, 666, 2236, 7625, 26419, 92644, 328370, 1174234, 4231898, 15354424, 56042372, 205626906, 758021598, 2806143522, 10427671924, 38882984840, 145443260702, 545598228056, 2052086677666, 7736986142773, 29236241424977
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Euler transform of sequence [1,0,2,4,14,40,132,424,1430,...] (C(n-1) if n odd, C(n-1)-C(n/2-1) if n even).

Crossrefs

Programs

  • Maple
    spec := [S,{C=Sequence(B),B=Prod(C,Z),S=PowerSet(B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    ClearAll[a]; b[k_] := Sum[ (-1)^(k/d + 1)*Binomial[2*d - 2, d - 1], {d, Divisors[k]}]; a[0] = 1; a[n_] := a[n] = (1/n)*Sum[a[n - k]*b[k], {k, 1, n}]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Oct 08 2012, after Vladeta Jovovic *)
  • PARI
    a(n)=local(A); if(n<1,!n,A=sum(k=1,n,(2*k-2)!/k!/(k-1)!*x^k,x*O(x^n)); polcoeff(exp(sum(k=1,n,-(-1)^k*subst(A,x,x^k)/k)),n))

Formula

a(n)=(1/n)*Sum_{k=1..n} a(n-k)*b(k), n>0, a(0)=1, b(k)=Sum_{d|k} (-1)^(k/d+1)*binomial(2*d-2, d-1). - Vladeta Jovovic, Jan 17 2002
G.f. A(x)=exp(Sum_{k>0} -(-1)^k* C(x^k)/k) where C(x)=(1-sqrt(1-4x))/2= g.f. A000108 (offset 1).
G.f.: Product_{k>=1} (1+x^k)^(1/k*binomial(2*k-2, k-1)). - Vladeta Jovovic, Jan 17 2002