cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052816 Expansion of g.f. (1+x)*Product_{m>0} (1 + x^m).

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 7, 9, 11, 14, 18, 22, 27, 33, 40, 49, 59, 70, 84, 100, 118, 140, 165, 193, 226, 264, 307, 357, 414, 478, 552, 636, 730, 838, 960, 1097, 1253, 1428, 1624, 1846, 2095, 2373, 2686, 3036, 3426, 3864, 4352, 4894, 5500, 6174, 6922, 7755, 8679, 9702
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Number of partitions of n into distinct parts where there are 2 sorts of ones. Also number of partitions of n where all parts except possibly the largest are odd, see example. [Joerg Arndt, Jun 09 2013]

Examples

			From _Joerg Arndt_, Jun 09 2013: (Start)
There are a(12)=27 partitions of 12 where all parts except possibly the largest are odd:
01:  [ 1 1 1 1 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 1 1 1 1 1 2 ]
03:  [ 1 1 1 1 1 1 1 1 1 3 ]
04:  [ 1 1 1 1 1 1 1 1 4 ]
05:  [ 1 1 1 1 1 1 1 5 ]
06:  [ 1 1 1 1 1 1 3 3 ]
07:  [ 1 1 1 1 1 1 6 ]
08:  [ 1 1 1 1 1 3 4 ]
09:  [ 1 1 1 1 1 7 ]
10:  [ 1 1 1 1 3 5 ]
11:  [ 1 1 1 1 8 ]
12:  [ 1 1 1 3 3 3 ]
13:  [ 1 1 1 3 6 ]
14:  [ 1 1 1 9 ]
15:  [ 1 1 3 3 4 ]
16:  [ 1 1 3 7 ]
17:  [ 1 1 5 5 ]
18:  [ 1 1 10 ]
19:  [ 1 3 3 5 ]
20:  [ 1 3 8 ]
21:  [ 1 5 6 ]
22:  [ 1 11 ]
23:  [ 3 3 3 3 ]
24:  [ 3 3 6 ]
25:  [ 3 9 ]
26:  [ 5 7 ]
27:  [ 12 ]
(End)
		

Crossrefs

Programs

  • Maple
    spec := [S,{B=Sequence(Z,1 <= card),C=Union(B,Z),S=PowerSet(C)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
    # second program
    series(1/2 * add( x^((n-1)*(n-2)/2) / mul(1 - x^k, k = 1..n), n = 0..11), x, 51):
    seq(coeftayl(%, x = 0, n), n = 0..50); # Peter Bala, Feb 03 2025
  • Mathematica
    a[n_] := PartitionsQ[n] + PartitionsQ[n-1];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 11 2022, after Vladeta Jovovic *)

Formula

G.f.: exp( sum(j>=1, (-1)^(j+1) * x^j * (x^j-2)/(x^j-1)/j ) ).
a(n) = A000009(n) + A000009(n-1). - Vladeta Jovovic, Jun 23 2003
a(n) ~ exp(sqrt(n/3)*Pi) / (2*3^(1/4)*n^(3/4)) * (1 - (3*sqrt(3)/(8*Pi) + 11*Pi/(48*sqrt(3)))/sqrt(n) + (55/128 - 45/(128*Pi^2) + 265*Pi^2/13824)/n). - Vaclav Kotesovec, Nov 04 2016
G.f.: A(x) = 1/2 * Sum_{n >= 0} x^((n-1)*(n-2)/2) / (Product_{k = 1..n} 1 - x^k). - Peter Bala, Feb 03 2025

Extensions

More terms from Vladeta Jovovic, Jun 23 2003