A052816 Expansion of g.f. (1+x)*Product_{m>0} (1 + x^m).
1, 2, 2, 3, 4, 5, 7, 9, 11, 14, 18, 22, 27, 33, 40, 49, 59, 70, 84, 100, 118, 140, 165, 193, 226, 264, 307, 357, 414, 478, 552, 636, 730, 838, 960, 1097, 1253, 1428, 1624, 1846, 2095, 2373, 2686, 3036, 3426, 3864, 4352, 4894, 5500, 6174, 6922, 7755, 8679, 9702
Offset: 0
Examples
From _Joerg Arndt_, Jun 09 2013: (Start) There are a(12)=27 partitions of 12 where all parts except possibly the largest are odd: 01: [ 1 1 1 1 1 1 1 1 1 1 1 1 ] 02: [ 1 1 1 1 1 1 1 1 1 1 2 ] 03: [ 1 1 1 1 1 1 1 1 1 3 ] 04: [ 1 1 1 1 1 1 1 1 4 ] 05: [ 1 1 1 1 1 1 1 5 ] 06: [ 1 1 1 1 1 1 3 3 ] 07: [ 1 1 1 1 1 1 6 ] 08: [ 1 1 1 1 1 3 4 ] 09: [ 1 1 1 1 1 7 ] 10: [ 1 1 1 1 3 5 ] 11: [ 1 1 1 1 8 ] 12: [ 1 1 1 3 3 3 ] 13: [ 1 1 1 3 6 ] 14: [ 1 1 1 9 ] 15: [ 1 1 3 3 4 ] 16: [ 1 1 3 7 ] 17: [ 1 1 5 5 ] 18: [ 1 1 10 ] 19: [ 1 3 3 5 ] 20: [ 1 3 8 ] 21: [ 1 5 6 ] 22: [ 1 11 ] 23: [ 3 3 3 3 ] 24: [ 3 3 6 ] 25: [ 3 9 ] 26: [ 5 7 ] 27: [ 12 ] (End)
Links
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 781
Programs
-
Maple
spec := [S,{B=Sequence(Z,1 <= card),C=Union(B,Z),S=PowerSet(C)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20); # second program series(1/2 * add( x^((n-1)*(n-2)/2) / mul(1 - x^k, k = 1..n), n = 0..11), x, 51): seq(coeftayl(%, x = 0, n), n = 0..50); # Peter Bala, Feb 03 2025
-
Mathematica
a[n_] := PartitionsQ[n] + PartitionsQ[n-1]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 11 2022, after Vladeta Jovovic *)
Formula
G.f.: exp( sum(j>=1, (-1)^(j+1) * x^j * (x^j-2)/(x^j-1)/j ) ).
a(n) ~ exp(sqrt(n/3)*Pi) / (2*3^(1/4)*n^(3/4)) * (1 - (3*sqrt(3)/(8*Pi) + 11*Pi/(48*sqrt(3)))/sqrt(n) + (55/128 - 45/(128*Pi^2) + 265*Pi^2/13824)/n). - Vaclav Kotesovec, Nov 04 2016
G.f.: A(x) = 1/2 * Sum_{n >= 0} x^((n-1)*(n-2)/2) / (Product_{k = 1..n} 1 - x^k). - Peter Bala, Feb 03 2025
Extensions
More terms from Vladeta Jovovic, Jun 23 2003
Comments