cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052823 A simple grammar: cycles of pairs of sequences.

Original entry on oeis.org

0, 0, 1, 2, 4, 6, 12, 18, 34, 58, 106, 186, 350, 630, 1180, 2190, 4114, 7710, 14600, 27594, 52486, 99878, 190744, 364722, 699250, 1342182, 2581426, 4971066, 9587578, 18512790, 35792566, 69273666, 134219794, 260301174, 505294126, 981706830, 1908881898
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Number of n-bead necklaces using exactly two different colors. - Robert A. Russell, Sep 26 2018

Crossrefs

A000031 - 2.
Column k=2 of A087854.

Programs

  • Maple
    spec := [S,{B=Sequence(Z,1 <= card),C=Prod(B,B),S= Cycle(C)},unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
  • Mathematica
    k=2; Prepend[Table[k!DivisorSum[n,EulerPhi[#]StirlingS2[n/#,k]&]/n,{n,1,30}],0] (* Robert A. Russell, Sep 26 2018 *)

Formula

G.f.: Sum_{j>=1} phi(j)/j*log(-(x^j-1)^2/(2*x^j-1)).
a(n) = (k!/n) Sum_{d|n} phi(d) S2(n/d,k), where k=2 is the number of colors and S2 is the Stirling subset number A008277. - Robert A. Russell, Sep 26 2018
a(n) ~ 2^n / n. - Vaclav Kotesovec, Sep 25 2019

Extensions

More terms from Alois P. Heinz, Jan 25 2015