cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052825 A simple grammar: partial sums of A008965.

Original entry on oeis.org

0, 0, 1, 3, 6, 11, 18, 31, 50, 85, 144, 251, 438, 789, 1420, 2601, 4792, 8907, 16618, 31219, 58814, 111301, 211180, 401925, 766648, 1465899, 2808082, 5389509, 10360576, 19948155, 38460946, 74253513, 143527180, 277746975, 538048150, 1043342277, 2025049108
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{B=Cycle(C),C=Sequence(Z,1 <= card),S=Prod(C,B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
    h := n -> add(numtheory:-phi(j)/j*log((x^j-1)/(2*x^j-1)), j=1..n):
    seq(coeff(series((x/(1-x))*h(n),x,n+1),x,n),n=0..36); # Peter Luschny, Oct 25 2015
  • Mathematica
    m = 40;
    gf = (x/(1-x))*Sum[EulerPhi[j]/j*Log[(x^j-1)/(2*x^j-1)], {j,1,m}] + O[x]^m;
    CoefficientList[gf, x] (* Jean-François Alcover, Jun 03 2019 *)
  • Sage
    var('x'); a = lambda n: taylor(x/(1-x) * sum([taylor(euler_phi(i)/i * log((x^i - 1)/(2*x^i - 1)), x, 0, n) for i in range(1, n+1)]), x, 0, n).coefficient(x^n) # Danny Rorabaugh, Oct 25 2015

Formula

G.f.: (x/(x-1))*Sum_{j>=1} (A000010(j)/j)*log((x^j-1)/(2*x^j-1)).
a(n) ~ 2^n/n * (1 + 2/n + 6/n^2 + 26/n^3 + 150/n^4 + 1082/n^5 + 9366/n^6 + 94586/n^7 + 1091670/n^8 + 14174522/n^9 + 204495126/n^10 + ...), for coefficients see A000629. - Vaclav Kotesovec, Jun 03 2019

Extensions

More terms from Danny Rorabaugh, Oct 25 2015