A305544 Number of chiral pairs of color loops of length n with exactly 5 different colors.
0, 0, 0, 0, 12, 150, 1200, 7845, 46280, 254676, 1344900, 6892425, 34646220, 171715050, 843004688, 4110478470, 19950471120, 96525524140, 466068873900, 2247609721431, 10832163963860, 52194011649150, 251522234238000, 1212501695554920, 5848043487355752, 28223528190496380, 136307124614215660, 658800774340433025, 3186621527711606940
Offset: 1
Examples
For a(5)=12, the chiral pairs of color loops are ABCDE-AEDCB, ABCED-ADECB, ABDCE-AECDB, ABDEC-ACEDB, ABECD-ADCEB, ABEDC-ACDEB, ACBDE-AEDBC, ACBED-ADEBC, ACDBE-AEBCD, ACEDB-ABDEC, ADBCE-AECBD, ADBEC-ACEBD, and ADCBE-AEBCD.
Crossrefs
Fifth column of A305541.
Programs
-
Mathematica
k=5; Table[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k] &] - (k!/4) (StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k]), {n, 1, 40}]
-
PARI
a(n) = my(k=5); -(k!/4)*(stirling(floor((n+1)/2),k,2) + stirling(ceil((n+1)/2),k,2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2)); \\ Michel Marcus, Jun 06 2018
Formula
a(n) = -(k!/4)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/(2n))*Sum_{d|n} phi(d)*S2(n/d,k), with k=5 different colors used and where S2(n,k) is the Stirling subset number A008277.
a(n) = A305541(n,5).
G.f.: -30 * x^8 * (1+x)^2 / Product_{j=1..5} (1-j*x^2) - Sum_{d>0} (phi(d)/(2d)) * (log(1-5x^d) - 5*log(1-4x^d) + 10*log(1-3x^3) - 10*log(1-2x^d) + 5*log(1-x^d)).