cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052837 Number of partitions of 2n whose Ferrers-Young diagram allows more than one different domino tiling.

Original entry on oeis.org

0, 0, 1, 4, 10, 22, 43, 80, 141, 240, 397, 640, 1011, 1568, 2395, 3604, 5360, 7876, 11460, 16510, 23588, 33418, 47006, 65640, 91085, 125596, 172215, 234820, 318579, 430060, 577920, 773130, 1030007, 1366644, 1806445, 2378892, 3121835, 4082796, 5322360, 6916360
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

The original name was: A simple grammar.

Crossrefs

Essentially the same as A048574.

Programs

  • Maple
    spec := [S,{C=Sequence(Z,1 <= card),B=Set(C,1 <= card),S=Prod(B,B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
    # second Maple program:
    a:= n-> (p-> add(p(j)*p(n-j), j=1..n-1))(combinat[numbpart]):
    seq(a(n), n=0..40);  # Alois P. Heinz, May 26 2018
  • Mathematica
    a[n_] := If[n <= 1, 0, With[{pp = Array[PartitionsP, n-1]},
       First[ListConvolve[pp, pp]]]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jan 30 2025 *)

Formula

G.f.: (exp(Sum_{j>=1} -x^j/((x^j-1)*j) )-1)^2.
a(n) = Sum_{k>=2} A304789(n,k). - Alois P. Heinz, May 26 2018

Extensions

More terms from Franklin T. Adams-Watters, Feb 08 2006
New name from Alois P. Heinz, May 26 2018