A052837 Number of partitions of 2n whose Ferrers-Young diagram allows more than one different domino tiling.
0, 0, 1, 4, 10, 22, 43, 80, 141, 240, 397, 640, 1011, 1568, 2395, 3604, 5360, 7876, 11460, 16510, 23588, 33418, 47006, 65640, 91085, 125596, 172215, 234820, 318579, 430060, 577920, 773130, 1030007, 1366644, 1806445, 2378892, 3121835, 4082796, 5322360, 6916360
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 804
Programs
-
Maple
spec := [S,{C=Sequence(Z,1 <= card),B=Set(C,1 <= card),S=Prod(B,B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20); # second Maple program: a:= n-> (p-> add(p(j)*p(n-j), j=1..n-1))(combinat[numbpart]): seq(a(n), n=0..40); # Alois P. Heinz, May 26 2018
-
Mathematica
a[n_] := If[n <= 1, 0, With[{pp = Array[PartitionsP, n-1]}, First[ListConvolve[pp, pp]]]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jan 30 2025 *)
Formula
G.f.: (exp(Sum_{j>=1} -x^j/((x^j-1)*j) )-1)^2.
a(n) = Sum_{k>=2} A304789(n,k). - Alois P. Heinz, May 26 2018
Extensions
More terms from Franklin T. Adams-Watters, Feb 08 2006
New name from Alois P. Heinz, May 26 2018
Comments