A052891 Number of objects generated by the Combstruct grammar defined in the Maple program. See the link for the grammar specification.
0, 1, 2, 5, 16, 56, 217, 876, 3686, 15903, 70103, 314042, 1426076, 6548060, 30352695, 141837086, 667469159, 3160370217, 15045244375, 71970393570, 345766441537, 1667629158127, 8071308125136, 39190243658297, 190845259909328, 931856232714004, 4561292365652751
Offset: 0
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 867
- Maplesoft, Combstruct grammars.
Crossrefs
Cf. A052893.
Programs
-
Maple
spec := [S, {C=Prod(Z,B), S=Set(C,1 <= card), B=Sequence(S)}, unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={my(v=[0]); for(n=1, n, v=concat([0],EulerT(Vec(1/(1-Ser(v)))))); v} \\ Andrew Howroyd, Aug 09 2020
Formula
G.f.: 1 - 1/g(x) where g(x) is the g.f. of A052893. - Andrew Howroyd, Aug 09 2020
Extensions
Terms a(21) and beyond from Andrew Howroyd, Aug 09 2020