cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052893 Number of objects generated by the Combstruct grammar defined in the Maple program. See the link for the grammar specification.

Original entry on oeis.org

1, 1, 3, 10, 37, 144, 589, 2483, 10746, 47420, 212668, 966324, 4439540, 20587286, 96237484, 453012296, 2145478716, 10215922013, 48877938369, 234862013473, 1132902329028, 5483947191651, 26630419098206, 129696204701807, 633339363924611, 3100369991303297
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Number of free pure symmetric multifunctions with n + 1 unlabeled leaves. A free pure symmetric multifunction f in PSM is either (case 1) f = the leaf symbol "o", or (case 2) f = an expression of the form h[g_1, ..., g_k] where k > 0, h is in PSM, each of the g_i for i = 1, ..., k is in PSM, and for i < j we have g_i <= g_j under a canonical total ordering of PSM, such as the Mathematica ordering of expressions. - Gus Wiseman, Aug 02 2018

Examples

			From _Gus Wiseman_, Aug 02 2018: (Start)
The a(3) = 10 free pure symmetric multifunctions with 4 unlabeled leaves:
  o[o[o[o]]]
  o[o[o][o]]
  o[o][o[o]]
  o[o[o]][o]
  o[o][o][o]
  o[o[o,o]]
  o[o,o[o]]
  o[o][o,o]
  o[o,o][o]
  o[o,o,o]
(End)
		

Crossrefs

Programs

  • Maple
    spec := [S, {C = Set(B,1 <= card), B=Prod(Z,S), S=Sequence(C)}, unlabeled]:
    seq(combstruct[count](spec, size=n), n=0..20);
  • Mathematica
    multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times];
    a[n_]:=a[n]=If[n==1,1,Sum[a[k]*Sum[Product[multing[a[First[s]],Length[s]],{s,Split[p]}],{p,IntegerPartitions[n-k]}],{k,1,n-1}]];
    Array[a,30] (* Gus Wiseman, Aug 02 2018 *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[1]); for(n=1, n, v=Vec(1/(1-x*Ser(EulerT(v))))); v} \\ Andrew Howroyd, Aug 09 2020

Formula

G.f.: 1/(1 - g(x)) where g(x) is the g.f. of A052891. - Andrew Howroyd, Aug 09 2020

Extensions

More terms from Gus Wiseman, Aug 02 2018