A052923 Expansion of (1-x)/(1 - x - 4*x^2).
1, 0, 4, 4, 20, 36, 116, 260, 724, 1764, 4660, 11716, 30356, 77220, 198644, 507524, 1302100, 3332196, 8540596, 21869380, 56031764, 143509284, 367636340, 941673476, 2412218836, 6178912740, 15827788084, 40543439044, 103854591380
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 908
- Index entries for linear recurrences with constant coefficients, signature (1,4).
- Index entries for sequences related to Chebyshev polynomials.
Programs
-
GAP
a:=[1,0];; for n in [3..30] do a[n]:=a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, Oct 16 2019 a := n -> -(2*I)^n*ChebyshevU(n-2, -I/4): seq(simplify(a(n)), n = 0..28); # Peter Luschny, Dec 03 2023
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1 -x -4*x^2) )); // G. C. Greubel, Oct 16 2019 -
Maple
spec := [S,{S=Sequence(Prod(Sequence(Z),Z,Union(Z,Z,Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20); seq(coeff(series((1-x)/(1 -x -4*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 16 2019
-
Mathematica
LinearRecurrence[{1,4}, {1,0}, 30] (* G. C. Greubel, Oct 16 2019 *)
-
PARI
my(x='x+O('x^30)); Vec((1-x)/(1 -x -4*x^2)) \\ G. C. Greubel, Oct 16 2019
-
Sage
def A052923_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1-x)/(1 -x -4*x^2)).list() A052923_list(30) # G. C. Greubel, Oct 16 2019
Formula
G.f.: (1-x)/(1 - x - 4*x^2).
a(n) = a(n-1) + 4*a(n-2), with a(0)=1, a(1)=0.
a(n) = Sum_{alpha=RootOf(-1+z+4*z^2)} (1/17)*(-1+9*alpha)*alpha^(-1-n).
If p[1]=0, and p[i]=4, ( i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
From Wolfdieter Lang, Nov 27 2023: (Start)
a(n) = -(-2*i)^n*S(n-2, i/2), with i = sqrt(-1), and the S-Chebyshev polynomials (see A049310). S(-n, x) = -S(n-2, x). The Fibonacci polynomials are F(n, x) = (-i)^(n-1)*S(n-1, i*x). (End)
Extensions
More terms from James Sellers, Jun 06 2000
Comments