cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052923 Expansion of (1-x)/(1 - x - 4*x^2).

Original entry on oeis.org

1, 0, 4, 4, 20, 36, 116, 260, 724, 1764, 4660, 11716, 30356, 77220, 198644, 507524, 1302100, 3332196, 8540596, 21869380, 56031764, 143509284, 367636340, 941673476, 2412218836, 6178912740, 15827788084, 40543439044, 103854591380
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

First differences of A006131.
This sequence {a(n)} appears in the formula for powers of c = (1 + sqrt(17))/2 = A222132, the fundamental (integer) algebraic number of Q(sqrt(17)): c^n = a(n) + A006131(n-1)*c. This is also valid for positive powers of 1/c = (-1 + sqrt(17)) /8. See the formula below and in A006131 in terms of Chebyshev or Fibonacci polynomials. - Wolfdieter Lang, Nov 27 2023

Crossrefs

Programs

  • GAP
    a:=[1,0];; for n in [3..30] do a[n]:=a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, Oct 16 2019
    a := n -> -(2*I)^n*ChebyshevU(n-2, -I/4):
    seq(simplify(a(n)), n = 0..28);  # Peter Luschny, Dec 03 2023
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1 -x -4*x^2) )); // G. C. Greubel, Oct 16 2019
    
  • Maple
    spec := [S,{S=Sequence(Prod(Sequence(Z),Z,Union(Z,Z,Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
    seq(coeff(series((1-x)/(1 -x -4*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 16 2019
  • Mathematica
    LinearRecurrence[{1,4}, {1,0}, 30] (* G. C. Greubel, Oct 16 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)/(1 -x -4*x^2)) \\ G. C. Greubel, Oct 16 2019
    
  • Sage
    def A052923_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-x)/(1 -x -4*x^2)).list()
    A052923_list(30) # G. C. Greubel, Oct 16 2019
    

Formula

G.f.: (1-x)/(1 - x - 4*x^2).
a(n) = a(n-1) + 4*a(n-2), with a(0)=1, a(1)=0.
a(n) = Sum_{alpha=RootOf(-1+z+4*z^2)} (1/17)*(-1+9*alpha)*alpha^(-1-n).
If p[1]=0, and p[i]=4, ( i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
From Wolfdieter Lang, Nov 27 2023: (Start)
a(n) = 4*A006131(n-2), with A006131(-2) = 1/4 and A006131(-1) = 0.
a(n) = -(-2*i)^n*S(n-2, i/2), with i = sqrt(-1), and the S-Chebyshev polynomials (see A049310). S(-n, x) = -S(n-2, x). The Fibonacci polynomials are F(n, x) = (-i)^(n-1)*S(n-1, i*x). (End)

Extensions

More terms from James Sellers, Jun 06 2000