cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A356463 Sum of powers of roots of x^3 - 4*x^2 + x + 1.

Original entry on oeis.org

3, 4, 14, 49, 178, 649, 2369, 8649, 31578, 115294, 420949, 1536924, 5611453, 20487939, 74803379, 273114124, 997165178, 3640743209, 13292693534, 48532865749, 177198026253, 646966545729, 2362135290914
Offset: 0

Views

Author

Greg Dresden and Ding Hao, Aug 08 2022

Keywords

Comments

The three roots of x^3 - 4*x^2 + x + 1 are c1 = 1 + 2*cos(Pi/13) + 2*cos(5*Pi/13), c2 = 1 + 2*cos(3*Pi/13) + 2*cos(11*Pi/13), and c3 = 1 + 2*cos(7*Pi/13) + 2*cos(9*Pi/13), so our entries are a(n) = c1^n + c2^n + c3^n.

Crossrefs

Cf. A052941.

Programs

  • Mathematica
    LinearRecurrence[{4, -1, -1}, {3, 4, 14},30]
  • PARI
    a(n) = ([0,1,0;0,0,1;-1,-1,4]^n * [3;4;14])[1,1] \\ Jianing Song, Aug 09 2022
    
  • PARI
    polsym(x^3 - 4*x^2 + x + 1, 33) \\ Joerg Arndt, Sep 13 2022

Formula

G.f.: (3 - 8*x + x^2)/(1 - 4*x + x^2 + x^3).
a(n) = 4*a(n-1) - a(n-2) - a(n-3).
a(n) = 3*b(n-1) + 5*b(n-2) + b(n-3) for b(n) = A052941(n).
a(n) = round(c1^n), c1 per the comment, n >= 3. - Bill McEachen, Sep 12 2022

A362379 Convolution triangle of A052547(n).

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 1, 4, 0, 1, 5, 2, 6, 0, 1, 5, 14, 3, 8, 0, 1, 14, 14, 27, 4, 10, 0, 1, 19, 49, 27, 44, 5, 12, 0, 1, 42, 68, 113, 44, 65, 6, 14, 0, 1, 66, 175, 159, 214, 65, 90, 7, 16, 0, 1, 131, 286, 465, 304, 360, 90, 119, 8, 18, 0, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 20 2023

Keywords

Examples

			Triangle begins, for n>=0, 0<=k<=n :
   1 ;
   0,  1 ;
   2,  0,   1 ;
   1,  4,   0,  1 ;
   5,  2,   6,  0,  1 ;
   5, 14,   3,  8,  0,  1 ;
  14, 14,  27,  4, 10,  0,  1 ;
  19, 49,  27, 44,  5, 12,  0, 1 ;
  42, 68, 113, 44, 65,  6, 14, 0, 1 ;
  ...
		

Crossrefs

Cf. A052547, A077998 (row sums), A052964 (diagonal sums).

Formula

T(n,k) = T(n-1,k) + T(n-1,k-1) + 2*T(n-2,k) - T(n-2,k-1) - T(n-3,k) ; T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = T(2,1) = 0, T(2,0) = 2, T(n,k) = 0 if k<0 or if k>n .
Sum_{k = 0..n} T(n,k)*x^k = A052547(n), A077998(n), A052536(n), A052941(n) for x = 0, 1, 2, 3 respectively.
Sum_{k = 0..n} T(n,k)*2^(n-k) = A139818(n+1) = A001045(n+1)^2.
Showing 1-2 of 2 results.