A052954 Expansion of (2-x-x^2-x^3)/((1-x)*(1-x^2-x^3)).
2, 1, 2, 2, 2, 3, 3, 4, 5, 6, 8, 10, 13, 17, 22, 29, 38, 50, 66, 87, 115, 152, 201, 266, 352, 466, 617, 817, 1082, 1433, 1898, 2514, 3330, 4411, 5843, 7740, 10253, 13582, 17992, 23834, 31573, 41825, 55406, 73397, 97230, 128802, 170626, 226031, 299427
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1025
- Dominika Závacká, Cristina Dalfó, and Miquel Angel Fiol, Integer sequences from k-iterated line digraphs, CEUR: Proc. 24th Conf. Info. Tech. - Appl. and Theory (ITAT 2024) Vol 3792, 156-161. See p. 161, Table 2.
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1).
Programs
-
GAP
a:=[2,1,2,2];; for n in [5..40] do a[n]:=a[n-1]+a[n-2]-a[n-4]; od; a; # G. C. Greubel, Oct 22 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (2-x-x^2-x^3)/((1-x)*(1-x^2-x^3)) )); // G. C. Greubel, Oct 22 2019 -
Maple
spec:= [S,{S=Union(Sequence(Prod(Union(Prod(Z,Z),Z),Z)), Sequence(Z))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20); seq(coeff(series((2-x-x^2-x^3)/((1-x)*(1-x^2-x^3)), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Oct 22 2019
-
Mathematica
LinearRecurrence[{1,1,0,-1}, {2,1,2,2}, 40] (* G. C. Greubel, Oct 22 2019 *)
-
PARI
my(x='x+O('x^40)); Vec((2-x-x^2-x^3)/((1-x)*(1-x^2-x^3))) \\ G. C. Greubel, Oct 22 2019
-
Sage
def A052954_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((2-x-x^2-x^3)/((1-x)*(1-x^2-x^3))).list() A052954_list(40) # G. C. Greubel, Oct 22 2019
Formula
G.f.: (2-x-x^2-x^3)/((1-x)*(1-x^2-x^3)).
a(n) = a(n-2) + a(n-3) - 1.
a(n) = 1 + Sum_{alpha=RootOf(-1+z^2+z^3)} (1/23)*(3 +7*alpha -2*alpha^2) * alpha^(-1-n).
lim n->inf a(n)/a(n-1) = positive root of 1+x-x^3 (smallest Pisot-Vijayaraghavan number, A060006) - Gerald McGarvey, Sep 19 2004
a(n) = 1 + A000931(n+3). - G. C. Greubel, Oct 22 2019
Extensions
More terms from James Sellers, Jun 05 2000
Comments