cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052954 Expansion of (2-x-x^2-x^3)/((1-x)*(1-x^2-x^3)).

Original entry on oeis.org

2, 1, 2, 2, 2, 3, 3, 4, 5, 6, 8, 10, 13, 17, 22, 29, 38, 50, 66, 87, 115, 152, 201, 266, 352, 466, 617, 817, 1082, 1433, 1898, 2514, 3330, 4411, 5843, 7740, 10253, 13582, 17992, 23834, 31573, 41825, 55406, 73397, 97230, 128802, 170626, 226031, 299427
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

For n > 2, a(n) = floor(sqrt(a(n-3)*a(n-2) + a(n-2)*a(n-1) + a(n-1)*a(n-3))). - Gerald McGarvey, Sep 19 2004

Crossrefs

Programs

  • GAP
    a:=[2,1,2,2];; for n in [5..40] do a[n]:=a[n-1]+a[n-2]-a[n-4]; od; a; # G. C. Greubel, Oct 22 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (2-x-x^2-x^3)/((1-x)*(1-x^2-x^3)) )); // G. C. Greubel, Oct 22 2019
    
  • Maple
    spec:= [S,{S=Union(Sequence(Prod(Union(Prod(Z,Z),Z),Z)), Sequence(Z))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
    seq(coeff(series((2-x-x^2-x^3)/((1-x)*(1-x^2-x^3)), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Oct 22 2019
  • Mathematica
    LinearRecurrence[{1,1,0,-1}, {2,1,2,2}, 40] (* G. C. Greubel, Oct 22 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((2-x-x^2-x^3)/((1-x)*(1-x^2-x^3))) \\ G. C. Greubel, Oct 22 2019
    
  • Sage
    def A052954_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((2-x-x^2-x^3)/((1-x)*(1-x^2-x^3))).list()
    A052954_list(40) # G. C. Greubel, Oct 22 2019
    

Formula

G.f.: (2-x-x^2-x^3)/((1-x)*(1-x^2-x^3)).
a(n) = a(n-2) + a(n-3) - 1.
a(n) = 1 + Sum_{alpha=RootOf(-1+z^2+z^3)} (1/23)*(3 +7*alpha -2*alpha^2) * alpha^(-1-n).
lim n->inf a(n)/a(n-1) = positive root of 1+x-x^3 (smallest Pisot-Vijayaraghavan number, A060006) - Gerald McGarvey, Sep 19 2004
a(n) = 2*A023434(n+1) - A023434(n) - A023434(n-2) - A023434(n-3). - R. J. Mathar, Nov 28 2011
a(n) = 1 + A000931(n+3). - G. C. Greubel, Oct 22 2019

Extensions

More terms from James Sellers, Jun 05 2000