cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052963 a(0)=1, a(1)=2, a(2)=5, a(n) = 3*a(n+2) - a(n+3).

Original entry on oeis.org

1, 2, 5, 14, 40, 115, 331, 953, 2744, 7901, 22750, 65506, 188617, 543101, 1563797, 4502774, 12965221, 37331866, 107492824, 309513251, 891207887, 2566130837, 7388879260, 21275429893, 61260158842, 176391597266, 507899361905
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Equals the INVERT transform of the Pell sequence prefaced with a "1": (1, 1, 2, 5, 12, 29, ...). - Gary W. Adamson, May 01 2009

Crossrefs

Programs

  • Maple
    spec := [S,{S=Sequence(Union(Prod(Sequence(Union(Prod(Z,Z),Z)),Z),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • Mathematica
    LinearRecurrence[{3,0,-1},{1,2,5},30] (* Harvey P. Dale, Dec 26 2015 *)

Formula

G.f.: -(-1+x+x^2)/(1-3*x+x^3).
a(n) = Sum((1/9)*(1+2*_alpha+_alpha^2)*_alpha^(-1-n), _alpha=RootOf(1-3*_Z+_Z^3)). [in Maple notation]
a(n)/a(n-1) tends to 2.8793852... = 1/(2*cos(4*Pi/9)), a root of x^3 -3x^2 + 1 (the characteristic polynomial of the 3 X 3 matrix). The latter polynomial is a factor (with (x + 1)) of the 4th degree polynomial of A066170: x^4 - 2x^3 - 3x^2 + x + 1. Given the 3 X 3 matrix [0 1 0 / 0 0 1 / -1 0 3], (M^n)*[1 1 1] = [a(n-2), a(n-1), a(n)]. - Gary W. Adamson, Feb 29 2004
a(n) = A076264(n)-A076264(n-1)-A076264(n-2). - R. J. Mathar, Feb 27 2019

Extensions

More terms from James Sellers, Jun 05 2000