cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052967 Expansion of (1 - x)/(1 - 2*x - x^2 + x^4).

Original entry on oeis.org

1, 1, 3, 7, 16, 38, 89, 209, 491, 1153, 2708, 6360, 14937, 35081, 82391, 193503, 454460, 1067342, 2506753, 5887345, 13826983, 32473969, 76268168, 179122960, 420687105, 988023201, 2320465339, 5449830919, 12799440072, 30060687862
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Equals INVERT transform of (1, 2, 2, 1, 1, 1, ...). - Gary W. Adamson, Apr 28 2009
a(n) is the number of perfect matchings in the graph with vertices labeled 1 to 2n with edges {i,j} for |i-j| <= 3. - Robert Israel, Jan 22 2019

Programs

  • Maple
    spec := [S,{S=Sequence(Prod(Union(Prod(Z,Z),Z,Sequence(Z)),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • Maxima
    a(n):=sum(sum(binomial(k,l)*sum(binomial(l,i)*binomial(n-i-2*l-1,n-k-i-l),i,0,n-k-l),l,0,k),k,0,n); /* Vladimir Kruchinin, Mar 16 2016  */
    
  • PARI
    Vec((1-x)/(1-2*x-x^2+x^4) + O(x^40)) \\ Michel Marcus, Mar 16 2016

Formula

Recurrence: {a(1)=1, a(0)=1, a(2)=3, a(3)=7, a(n)-a(n+2)-2*a(n+3)+a(n+4)}.
Sum(-(1/106)*(-17 - 22*_alpha + 10*_alpha^2 + 8*_alpha^3)*_alpha^(-1-n), _alpha=RootOf(1 - 2*_Z - _Z^2 + _Z^4)).
a(n) = Sum_{k=0..n} (Sum_{m=0..k} (binomial(k,m)*Sum_{i=0..n-k-m}(binomial(m,i)*binomial(n-i-2*m-1,n-k-i-m)))). - Vladimir Kruchinin, Mar 16 2016