cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052969 Expansion of (1-x)/(1-x-2x^2+x^4).

Original entry on oeis.org

1, 0, 2, 2, 5, 9, 17, 33, 62, 119, 226, 431, 821, 1564, 2980, 5677, 10816, 20606, 39258, 74793, 142493, 271473, 517201, 985354, 1877263, 3576498, 6813823, 12981465, 24731848, 47118280, 89768153, 171023248, 325827706, 620755922, 1182643181
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. A052535.

Programs

  • Maple
    spec := [S,{S=Sequence(Prod(Union(Prod(Union(Sequence(Z),Z),Z),Z),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[(1-x)/(1-x-2x^2+x^4),{x,0,40}],x] (* or *) LinearRecurrence[{1,2,0,-1},{1,0,2,2},40] (* Harvey P. Dale, Oct 20 2017 *)

Formula

G.f.: -(-1+x)/(1-2*x^2+x^4-x).
Recurrence: {a(0)=1, a(1)=0, a(2)=2, a(3)=2, a(n)-2*a(n+2)-a(n+3)+a(n+4)=0}.
Sum_(1/283*(29*_alpha+28*_alpha^3-76*_alpha^2+55)*_alpha^(-1-n), _alpha=RootOf(1-2*_Z^2+_Z^4-_Z)).
a(n)+a(n-1) = A052535(n). - R. J. Mathar, Nov 28 2011

Extensions

More terms from James Sellers, Jun 05 2000