cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052973 Expansion of ( 1-x ) / ( 1-x-3*x^2+x^3 ).

Original entry on oeis.org

1, 0, 3, 2, 11, 14, 45, 76, 197, 380, 895, 1838, 4143, 8762, 19353, 41496, 90793, 195928, 426811, 923802, 2008307, 4352902, 9454021, 20504420, 44513581, 96572820, 209609143, 454814022, 987068631, 2141901554, 4648293425
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

References

  • Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.

Programs

  • Maple
    spec := [S,{S=Sequence(Prod(Union(Prod(Union(Z,Z),Sequence(Z)),Z),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[(1-x)/(1-x-3x^2+x^3),{x,0,30}],x] (* or *) LinearRecurrence[{1,3,-1},{1,0,3},40] (* Harvey P. Dale, Sep 06 2017 *)

Formula

G.f.: -(-1+x)/(1-x-3*x^2+x^3)
Recurrence: {a(1)=0, a(0)=1, a(2)=3, a(n)-3*a(n+1)-a(n+2)+a(n+3)=0}
Sum(-1/74*(1-34*_alpha+9*_alpha^2)*_alpha^(-1-n), _alpha=RootOf(1-_Z-3*_Z^2+_Z^3))
a(n) = A125691(n)-A125691(n-1). - R. J. Mathar, Feb 27 2019

Extensions

More terms from James Sellers, Jun 06 2000