A052987 Expansion of (1-2x^2)/(1-2x-2x^2+2x^3).
1, 2, 4, 10, 24, 60, 148, 368, 912, 2264, 5616, 13936, 34576, 85792, 212864, 528160, 1310464, 3251520, 8067648, 20017408, 49667072, 123233664, 305766656, 758666496, 1882398976, 4670597632, 11588660224, 28753717760, 71343560704
Offset: 0
Links
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1061
- Index entries for linear recurrences with constant coefficients, signature (2,2,-2).
Programs
-
Maple
spec := [S,{S=Sequence(Union(Prod(Sequence(Prod(Union(Z,Z),Z)),Z),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
-
Mathematica
InvertTransform[ser_, n_] := CoefficientList[ Series[1/(1 - x ser), {x,0,n}],x]; Jacobsthal := (2x^2-1)/((x + 1)(2x - 1)); PadLeft[InvertTransform[Jacobsthal, 29],29,1] (* Peter Luschny, Jan 10 2019 *)
Formula
G.f.: -(-1+2*x^2)/(1-2*x-2*x^2+2*x^3)
Recurrence: {a(0)=1, a(2)=4, a(1)=2, 2*a(n)-2*a(n+1)-2*a(n+2)+a(n+3)=0}
Sum(1/37*(6+7*_alpha+4*_alpha^2)*_alpha^(-1-n), _alpha=RootOf(2*_Z^3-2*_Z^2-2*_Z+1)).
Extensions
More terms from James Sellers, Jun 05 2000
Comments