cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052987 Expansion of (1-2x^2)/(1-2x-2x^2+2x^3).

Original entry on oeis.org

1, 2, 4, 10, 24, 60, 148, 368, 912, 2264, 5616, 13936, 34576, 85792, 212864, 528160, 1310464, 3251520, 8067648, 20017408, 49667072, 123233664, 305766656, 758666496, 1882398976, 4670597632, 11588660224, 28753717760, 71343560704
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Form the graph with matrix A=[1,1,1,1;1,0,0,0;1,0,0,0;1,0,0,1]. Then the sequence 1,1,2,4,... with g.f. (1-x-2x^2)/(1-2x-2x^2+2x^3) counts closed walks of length n at the degree 3 vertex. - Paul Barry, Oct 02 2004
Equals INVERT transform of the Jacobsthal sequence A001045 prefaced with a 1:
[1, 1, 1, 3, 5, 11, 21, 43, ...]. - Gary W. Adamson, May 27 2009

Crossrefs

Programs

  • Maple
    spec := [S,{S=Sequence(Union(Prod(Sequence(Prod(Union(Z,Z),Z)),Z),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • Mathematica
    InvertTransform[ser_, n_] := CoefficientList[ Series[1/(1 - x ser), {x,0,n}],x];
    Jacobsthal := (2x^2-1)/((x + 1)(2x - 1));
    PadLeft[InvertTransform[Jacobsthal, 29],29,1] (* Peter Luschny, Jan 10 2019 *)

Formula

G.f.: -(-1+2*x^2)/(1-2*x-2*x^2+2*x^3)
Recurrence: {a(0)=1, a(2)=4, a(1)=2, 2*a(n)-2*a(n+1)-2*a(n+2)+a(n+3)=0}
Sum(1/37*(6+7*_alpha+4*_alpha^2)*_alpha^(-1-n), _alpha=RootOf(2*_Z^3-2*_Z^2-2*_Z+1)).

Extensions

More terms from James Sellers, Jun 05 2000