cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A077937 Expansion of 1/(1-2*x-2*x^2+2*x^3).

Original entry on oeis.org

1, 2, 6, 14, 36, 88, 220, 544, 1352, 3352, 8320, 20640, 51216, 127072, 315296, 782304, 1941056, 4816128, 11949760, 29649664, 73566592, 182532992, 452899840, 1123732480, 2788198656, 6918062592, 17165057536, 42589842944, 105673675776, 262196922368
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Form the graph with matrix A = [1,1,1,1; 1,0,0,0; 1,0,0,0; 1,0,0,1]. Then the sequence 0, 1, 2, 6, ... counts walks of length n between the degree 5 vertex and the degree 3 vertex. - Paul Barry, Oct 02 2004
From Sean A. Irvine, Jun 05 2025: (Start)
Also, the number of walks of length n starting at vertex 0 in the graph:
1-2
/| |
0 | |
\| |
4-3. (End)

Crossrefs

Programs

  • Magma
    [n le 3 select Factorial(n) else 2*(Self(n-1) +Self(n-2) -Self(n-3)): n in [1..51]]; // G. C. Greubel, May 02 2022
    
  • Mathematica
    LinearRecurrence[{2,2,-2}, {1,2,6}, 50] (* Vladimir Joseph Stephan Orlovsky, Jul 03 2011 *)
    CoefficientList[Series[1/(1-2*x-2*x^2+2*x^3),{x,0,40}],x] (* Harvey P. Dale, Dec 05 2018 *)
  • PARI
    Vec(1/(1-2*x-2*x^2+2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • SageMath
    def A077937_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-2*x-2*x^2+2*x^3) ).list()
    A077937_list(50) # G. C. Greubel, May 02 2022

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) with a(0) = 1, a(1) = 2, and a(3) = 8. - G. C. Greubel, May 02 2022

A052528 Expansion of (1 - x)/(1 - 2*x - 2*x^2 + 2*x^3).

Original entry on oeis.org

1, 1, 4, 8, 22, 52, 132, 324, 808, 2000, 4968, 12320, 30576, 75856, 188224, 467008, 1158752, 2875072, 7133632, 17699904, 43916928, 108966400, 270366848, 670832640, 1664466176, 4129863936, 10246994944, 25424785408, 63083832832
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Form the graph with matrix A = [1,1,1,1; 1,0,0,0; 1,0,0,0; 1,0,0,1]. Then a(n) counts closed walks of length n at the degree 5 vertex. - Paul Barry, Oct 02 2004
Equals the INVERT transform of (1, 3, 1, 1, 1, ...). - Gary W. Adamson, Apr 27 2009
a(n) is also the number of vertex-transitive cover graphs of lattice quotients of essential lattice congruences of the weak order on the symmetric group S_{n+1}. See Table 1 in the Hoang/Mütze reference in the Links section. - Torsten Muetze, Nov 28 2019

Crossrefs

Programs

  • GAP
    a:=[1,1,4];; for n in [4..30] do a[n]:=2*a[n-1]+2*a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, May 12 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1 -2*x-2*x^2+2*x^3) )); // G. C. Greubel, May 12 2019
    
  • Maple
    spec := [S,{S=Sequence(Prod(Z,Union(Z,Z,Sequence(Z))))},unlabeled]:
    seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    LinearRecurrence[{2,2,-2}, {1,1,4}, 30] (* G. C. Greubel, May 12 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)/(1-2*x-2*x^2+2*x^3)) \\ G. C. Greubel, May 12 2019
    
  • Sage
    ((1-x)/(1-2*x-2*x^2+2*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
    

Formula

G.f.: (1 - x)/(1 - 2*x - 2*x^2 + 2*x^3).
Recurrence: a(1) = 1, a(0) = 1, a(2) = 4, 2*a(n) - 2*a(n+1) - 2*a(n+2) + a(n+3) = 0.
a(n) = Sum_{alpha=RootOf(2*Z^3-2*Z^2-2*Z+1)} (1/37)*(5 - 9*alpha^2 + 12*alpha)* alpha^(-1 - n).
a(n) = 2*a(n-2) + Sum_{i=0..n-1} a(i). - Yuchun Ji, Dec 29 2018

Extensions

More terms from James Sellers, Jun 06 2000

A077847 Expansion of (1-x)^(-1)/(1-2*x-2*x^2+2*x^3).

Original entry on oeis.org

1, 3, 9, 23, 59, 147, 367, 911, 2263, 5615, 13935, 34575, 85791, 212863, 528159, 1310463, 3251519, 8067647, 20017407, 49667071, 123233663, 305766655, 758666495, 1882398975, 4670597631, 11588660223, 28753717759, 71343560703, 177017236479, 439214158847
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Cf. A052987.

Programs

  • Mathematica
    CoefficientList[Series[(1-x)^(-1)/(1-2x-2x^2+2x^3),{x,0,40}],x] (* or *) LinearRecurrence[{3,0,-4,2},{1,3,9,23},40] (* Harvey P. Dale, Apr 02 2013 *)
  • PARI
    Vec((1-x)^(-1)/(1-2*x-2*x^2+2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(n) = -1+2*A077937(n)-2*A077937(n-2). [From R. J. Mathar, Nov 10 2009]
a(0)=1, a(1)=3, a(2)=9, a(3)=23, a(n)=3*a(n-1)-4*a(n-3)+2*a(n-4). - Harvey P. Dale, Apr 02 2013

A106666 Expansion of g.f. (1-4*x^2+2*x^3)/((1-x)*(1-2*x-2*x^2+2*x^3)).

Original entry on oeis.org

1, 3, 5, 13, 29, 73, 177, 441, 1089, 2705, 6705, 16641, 41281, 102433, 254145, 630593, 1564609, 3882113, 9632257, 23899521, 59299329, 147133185, 365065985, 905799681, 2247464961, 5576397313, 13836125185, 34330115073, 85179685889
Offset: 0

Views

Author

Creighton Dement, May 13 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: 1vesseq[I*J*cyc(I)] with I = + .5'ii' + .5'kk' + .5'ik' + .5'jk' + .5'ki' + .5'kj' and J = + .5'i + .5i' - .5'ii' + .5'jj' + .5'kk' + .5e

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!(  (1-4*x^2+2*x^3)/((1-x)*(1-2*x-2*x^2+2*x^3)) )); // G. C. Greubel, Sep 08 2021
    
  • Mathematica
    LinearRecurrence[{3,0,-4,2},{1,3,5,13},30] (* Harvey P. Dale, Jul 28 2015 *)
  • SageMath
    def A106666_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( (1-4*x^2+2*x^3)/((1-x)*(1-2*x-2*x^2+2*x^3)) ).list()
    A106666_list(50) # G. C. Greubel, Sep 08 2021

Formula

Superseeker results: a(n+1) - a(n) = A052970(n+2); a(n+2) - a(n) = A052987(n+2).
a(0)=1, a(n) = 2*A077937(n-1) + 1.

A109545 a(n) = 2*a(n-1) + a(n-2) + a(n-3).

Original entry on oeis.org

1, 1, 2, 6, 15, 38, 97, 247, 629, 1602, 4080, 10391, 26464, 67399, 171653, 437169, 1113390, 2835602, 7221763, 18392518, 46842401, 119299083, 303833085, 773807654, 1970747476, 5019135691, 12782826512, 32555536191, 82913034585
Offset: 0

Views

Author

Roger L. Bagula, Jun 20 2005

Keywords

Programs

  • Mathematica
    a = 2; b = -1; M = {{0, 1, 0, 0, 0}, { a - 2, a - 2, a - 2 - b, a - 2 - b, 0}, {1, 1, 1, 1, 0}, {0, 1, 1, 0, 0}, {0, 0, 0, 1, 1}} v[1] = {1, 1, 1, 1, 1} v[n_] := v[n] = M.v[n - 1] a0 = Table[Abs[v[n][[1]]], {n, 1, 50}]
    LinearRecurrence[{2,1,1},{1,1,2},30] (* Harvey P. Dale, Aug 05 2015 *)
    Lucas := 1 + x (1 + 2 x)/(1 - x - x^2); (* InvertTransform defined in A052987 *)
    InvertTransform[Lucas, 28] (* Peter Luschny, Jan 10 2019 *)

Formula

lim_{n-> infinity} a(n)/a(n-1)= 2.54682...
G.f.: (1-x-x^2)/(1-2*x-x^2-x^3). [Sep 28 2009]
a(n) = A077939(n)-A116413(n-1).
G.f.: (-1+x+x^2)/(-1+2*x+x^2+x^3). a(n) = A077997(n)-A077939(n-2). [From R. J. Mathar, Sep 27 2009]

Extensions

Definition replaced by recurrence by the Associate Editors of the OEIS, Sep 28 2009
Showing 1-5 of 5 results.