A077937
Expansion of 1/(1-2*x-2*x^2+2*x^3).
Original entry on oeis.org
1, 2, 6, 14, 36, 88, 220, 544, 1352, 3352, 8320, 20640, 51216, 127072, 315296, 782304, 1941056, 4816128, 11949760, 29649664, 73566592, 182532992, 452899840, 1123732480, 2788198656, 6918062592, 17165057536, 42589842944, 105673675776, 262196922368
Offset: 0
-
[n le 3 select Factorial(n) else 2*(Self(n-1) +Self(n-2) -Self(n-3)): n in [1..51]]; // G. C. Greubel, May 02 2022
-
LinearRecurrence[{2,2,-2}, {1,2,6}, 50] (* Vladimir Joseph Stephan Orlovsky, Jul 03 2011 *)
CoefficientList[Series[1/(1-2*x-2*x^2+2*x^3),{x,0,40}],x] (* Harvey P. Dale, Dec 05 2018 *)
-
Vec(1/(1-2*x-2*x^2+2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
-
def A077937_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/(1-2*x-2*x^2+2*x^3) ).list()
A077937_list(50) # G. C. Greubel, May 02 2022
A052987
Expansion of (1-2x^2)/(1-2x-2x^2+2x^3).
Original entry on oeis.org
1, 2, 4, 10, 24, 60, 148, 368, 912, 2264, 5616, 13936, 34576, 85792, 212864, 528160, 1310464, 3251520, 8067648, 20017408, 49667072, 123233664, 305766656, 758666496, 1882398976, 4670597632, 11588660224, 28753717760, 71343560704
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{S=Sequence(Union(Prod(Sequence(Prod(Union(Z,Z),Z)),Z),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
-
InvertTransform[ser_, n_] := CoefficientList[ Series[1/(1 - x ser), {x,0,n}],x];
Jacobsthal := (2x^2-1)/((x + 1)(2x - 1));
PadLeft[InvertTransform[Jacobsthal, 29],29,1] (* Peter Luschny, Jan 10 2019 *)
A330039
Number of essential lattice congruences of the weak order on the symmetric group S_n.
Original entry on oeis.org
1, 1, 4, 47, 3322, 11396000
Offset: 1
For n=3, the weak order on S_3 has the cover relations 123<132, 123<213, 132<312, 213<231, 312<321, 231<321, and there are a(3)=4 essential lattice congruences, namely {}, {132=312}, {213=231}, {132=312,213=231}.
- Hung Phuc Hoang, Torsten Mütze, Combinatorial generation via permutation languages. II. Lattice congruences, arXiv:1911.12078 [math.CO], 2019.
- V. Pilaud and F. Santos, Quotientopes, arXiv:1711.05353 [math.CO], 2017-2019; Bull. Lond. Math. Soc., 51 (2019), no. 3, 406-420.
A330040
Number of non-isomorphic cover graphs of lattice quotients of essential lattice congruences of the weak order on the symmetric group S_n.
Original entry on oeis.org
1, 1, 3, 19, 748, 2027309
Offset: 1
For n=3, the weak order on S_3 has the cover relations 123<132, 123<213, 132<312, 213<231, 312<321, 231<321, and there are four essential lattice congruences, namely {}, {132=312}, {213=231}, {132=312,213=231}. The cover graph of the first one is a 6-cycle, the cover graph of the middle two is a 5-cycle, and the cover graph of the last one is a 4-cycle. These are 3 non-isomorphic graphs, showing that a(3)=3.
- Hung Phuc Hoang, Torsten Mütze, Combinatorial generation via permutation languages. II. Lattice congruences, arXiv:1911.12078 [math.CO], 2019.
- V. Pilaud and F. Santos, Quotientopes, arXiv:1711.05353 [math.CO], 2017-2019; Bull. Lond. Math. Soc., 51 (2019), no. 3, 406-420.
A330042
Number of non-isomorphic regular cover graphs of lattice quotients of essential lattice congruences of the weak order on the symmetric group S_n.
Original entry on oeis.org
1, 1, 3, 10, 51, 335, 2909
Offset: 1
For n=3, the weak order on S_3 has the cover relations 123<132, 123<213, 132<312, 213<231, 312<321, 231<321, and there are four essential lattice congruences, namely {}, {132=312}, {213=231}, {132=312,213=231}. The cover graph of the first one is a 6-cycle, the cover graph of the middle two is a 5-cycle, and the cover graph of the last one is a 4-cycle. These are 3 non-isomorphic regular graphs, showing that a(3)=3.
- Hung Phuc Hoang, Torsten Mütze, Combinatorial generation via permutation languages. II. Lattice congruences, arXiv:1911.12078 [math.CO], 2019.
- V. Pilaud and F. Santos, Quotientopes, arXiv:1711.05353 [math.CO], 2017-2019; Bull. Lond. Math. Soc., 51 (2019), no. 3, 406-420.
A052575
Expansion of e.g.f. (1-x)/(1-2*x-2*x^2+2*x^3).
Original entry on oeis.org
1, 1, 8, 48, 528, 6240, 95040, 1632960, 32578560, 725760000, 18027878400, 491774976000, 14645952921600, 472356889804800, 16409046682828800, 610694391250944000, 24244324628299776000, 1022626965270822912000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{S=Sequence(Prod(Z,Union(Z,Z,Sequence(Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
m = 17; Range[0, m]! * CoefficientList[Series[(1 - x)/(1 - 2*x - 2*x^2 + 2*x^3), {x, 0, m}], x] (* Amiram Eldar, Mar 07 2022 *)
-
my(x='x+O('x^25)); Vec(serlaplace((1-x)/(1-2*x-2*x^2+2*x^3))) \\ Michel Marcus, Mar 07 2022
Showing 1-6 of 6 results.
Comments