cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A077937 Expansion of 1/(1-2*x-2*x^2+2*x^3).

Original entry on oeis.org

1, 2, 6, 14, 36, 88, 220, 544, 1352, 3352, 8320, 20640, 51216, 127072, 315296, 782304, 1941056, 4816128, 11949760, 29649664, 73566592, 182532992, 452899840, 1123732480, 2788198656, 6918062592, 17165057536, 42589842944, 105673675776, 262196922368
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Form the graph with matrix A = [1,1,1,1; 1,0,0,0; 1,0,0,0; 1,0,0,1]. Then the sequence 0, 1, 2, 6, ... counts walks of length n between the degree 5 vertex and the degree 3 vertex. - Paul Barry, Oct 02 2004
From Sean A. Irvine, Jun 05 2025: (Start)
Also, the number of walks of length n starting at vertex 0 in the graph:
1-2
/| |
0 | |
\| |
4-3. (End)

Crossrefs

Programs

  • Magma
    [n le 3 select Factorial(n) else 2*(Self(n-1) +Self(n-2) -Self(n-3)): n in [1..51]]; // G. C. Greubel, May 02 2022
    
  • Mathematica
    LinearRecurrence[{2,2,-2}, {1,2,6}, 50] (* Vladimir Joseph Stephan Orlovsky, Jul 03 2011 *)
    CoefficientList[Series[1/(1-2*x-2*x^2+2*x^3),{x,0,40}],x] (* Harvey P. Dale, Dec 05 2018 *)
  • PARI
    Vec(1/(1-2*x-2*x^2+2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • SageMath
    def A077937_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-2*x-2*x^2+2*x^3) ).list()
    A077937_list(50) # G. C. Greubel, May 02 2022

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) with a(0) = 1, a(1) = 2, and a(3) = 8. - G. C. Greubel, May 02 2022

A052987 Expansion of (1-2x^2)/(1-2x-2x^2+2x^3).

Original entry on oeis.org

1, 2, 4, 10, 24, 60, 148, 368, 912, 2264, 5616, 13936, 34576, 85792, 212864, 528160, 1310464, 3251520, 8067648, 20017408, 49667072, 123233664, 305766656, 758666496, 1882398976, 4670597632, 11588660224, 28753717760, 71343560704
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Form the graph with matrix A=[1,1,1,1;1,0,0,0;1,0,0,0;1,0,0,1]. Then the sequence 1,1,2,4,... with g.f. (1-x-2x^2)/(1-2x-2x^2+2x^3) counts closed walks of length n at the degree 3 vertex. - Paul Barry, Oct 02 2004
Equals INVERT transform of the Jacobsthal sequence A001045 prefaced with a 1:
[1, 1, 1, 3, 5, 11, 21, 43, ...]. - Gary W. Adamson, May 27 2009

Crossrefs

Programs

  • Maple
    spec := [S,{S=Sequence(Union(Prod(Sequence(Prod(Union(Z,Z),Z)),Z),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • Mathematica
    InvertTransform[ser_, n_] := CoefficientList[ Series[1/(1 - x ser), {x,0,n}],x];
    Jacobsthal := (2x^2-1)/((x + 1)(2x - 1));
    PadLeft[InvertTransform[Jacobsthal, 29],29,1] (* Peter Luschny, Jan 10 2019 *)

Formula

G.f.: -(-1+2*x^2)/(1-2*x-2*x^2+2*x^3)
Recurrence: {a(0)=1, a(2)=4, a(1)=2, 2*a(n)-2*a(n+1)-2*a(n+2)+a(n+3)=0}
Sum(1/37*(6+7*_alpha+4*_alpha^2)*_alpha^(-1-n), _alpha=RootOf(2*_Z^3-2*_Z^2-2*_Z+1)).

Extensions

More terms from James Sellers, Jun 05 2000

A330039 Number of essential lattice congruences of the weak order on the symmetric group S_n.

Original entry on oeis.org

1, 1, 4, 47, 3322, 11396000
Offset: 1

Views

Author

Torsten Muetze, Nov 28 2019

Keywords

Examples

			For n=3, the weak order on S_3 has the cover relations 123<132, 123<213, 132<312, 213<231, 312<321, 231<321, and there are a(3)=4 essential lattice congruences, namely {}, {132=312}, {213=231}, {132=312,213=231}.
		

Crossrefs

A330040 Number of non-isomorphic cover graphs of lattice quotients of essential lattice congruences of the weak order on the symmetric group S_n.

Original entry on oeis.org

1, 1, 3, 19, 748, 2027309
Offset: 1

Views

Author

Torsten Muetze, Nov 28 2019

Keywords

Examples

			For n=3, the weak order on S_3 has the cover relations 123<132, 123<213, 132<312, 213<231, 312<321, 231<321, and there are four essential lattice congruences, namely {}, {132=312}, {213=231}, {132=312,213=231}. The cover graph of the first one is a 6-cycle, the cover graph of the middle two is a 5-cycle, and the cover graph of the last one is a 4-cycle. These are 3 non-isomorphic graphs, showing that a(3)=3.
		

Crossrefs

A330042 Number of non-isomorphic regular cover graphs of lattice quotients of essential lattice congruences of the weak order on the symmetric group S_n.

Original entry on oeis.org

1, 1, 3, 10, 51, 335, 2909
Offset: 1

Views

Author

Torsten Muetze, Nov 28 2019

Keywords

Examples

			For n=3, the weak order on S_3 has the cover relations 123<132, 123<213, 132<312, 213<231, 312<321, 231<321, and there are four essential lattice congruences, namely {}, {132=312}, {213=231}, {132=312,213=231}. The cover graph of the first one is a 6-cycle, the cover graph of the middle two is a 5-cycle, and the cover graph of the last one is a 4-cycle. These are 3 non-isomorphic regular graphs, showing that a(3)=3.
		

Crossrefs

A052575 Expansion of e.g.f. (1-x)/(1-2*x-2*x^2+2*x^3).

Original entry on oeis.org

1, 1, 8, 48, 528, 6240, 95040, 1632960, 32578560, 725760000, 18027878400, 491774976000, 14645952921600, 472356889804800, 16409046682828800, 610694391250944000, 24244324628299776000, 1022626965270822912000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. A052528.

Programs

  • Maple
    spec := [S,{S=Sequence(Prod(Z,Union(Z,Z,Sequence(Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    m = 17; Range[0, m]! * CoefficientList[Series[(1 - x)/(1 - 2*x - 2*x^2 + 2*x^3), {x, 0, m}], x] (* Amiram Eldar, Mar 07 2022 *)
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace((1-x)/(1-2*x-2*x^2+2*x^3))) \\ Michel Marcus, Mar 07 2022

Formula

E.g.f.: (1-x)/(1-2*x-2*x^2+2*x^3).
(12+2*n^3+12*n^2+22*n)*a(n) + (-2*n^2-10*n-12)*a(n+1) + (-2*n-6)*a(n+2) + a(n+3) = 0, with a(1)=1, a(0)=1, a(2)=8.
Sum_(-1/37*(-5+9*_alpha^2-12*_alpha)*_alpha^(-1-n), _alpha=RootOf(2*_Z^3-2*_Z^2-2*_Z+1))*n!.
a(n) = n!*A052528(n). - R. J. Mathar, Nov 27 2011
Showing 1-6 of 6 results.