cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052988 Expansion of (1-x^2)/(1-2x-2x^2+x^3+x^4).

Original entry on oeis.org

1, 2, 5, 13, 33, 85, 218, 560, 1438, 3693, 9484, 24356, 62549, 160633, 412524, 1059409, 2720684, 6987029, 17943493, 46080951, 118341175, 303913730, 780485366, 2004376066, 5147467959, 13219288954, 33948652394, 87184038671
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{S=Sequence(Union(Prod(Union(Sequence(Prod(Z,Z)),Z),Z),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[(1-x^2)/(1-2x-2x^2+x^3+x^4),{x,0,30}],x] (* or *) LinearRecurrence[{2,2,-1,-1},{1,2,5,13},30] (* Harvey P. Dale, Sep 21 2016 *)

Formula

G.f.: -(-1+x^2)/(1-2*x-2*x^2+x^3+x^4)
Recurrence: {a(0)=1, a(1)=2, a(2)=5, a(3)=13, a(n)+a(n+1)-2*a(n+2)-2*a(n+3)+a(n+4)}
Sum(-1/331*(-49-147*_alpha+25*_alpha^2+76*_alpha^3)*_alpha^(-1-n), _alpha=RootOf(1-2*_Z-2*_Z^2+_Z^3+_Z^4))

Extensions

More terms from James Sellers, Jun 05 2000