A053031 Numbers with 1 zero in Fibonacci numbers mod m.
1, 2, 4, 11, 19, 22, 29, 31, 38, 44, 58, 59, 62, 71, 76, 79, 101, 116, 118, 121, 124, 131, 139, 142, 151, 158, 179, 181, 191, 199, 202, 209, 211, 229, 236, 239, 242, 251, 262, 271, 278, 284, 302, 311, 316, 319, 331, 341, 349, 358, 359, 361, 362, 379, 382, 398
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Brennan Benfield and Michelle Manes, The Fibonacci Sequence is Normal Base 10, arXiv:2202.08986 [math.NT], 2022.
- Brennan Benfield and Oliver Lippard, Connecting Zeros in Pisano Periods to Prime Factors of K-Fibonacci Numbers, arXiv:2407.20048 [math.NT], 2024.
- M. Renault, Fibonacci sequence modulo m
Crossrefs
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+---------
* and also A053032 U {2}
Programs
-
Haskell
a053031 n = a053031_list !! (n-1) a053031_list = filter ((== 1) . a001176) [1..] -- Reinhard Zumkeller, Jan 16 2014
-
Mathematica
With[{s = {1}~Join~Table[Count[Drop[NestWhile[Append[#, Mod[Total@ Take[#, -2], n]] &, {1, 1}, If[Length@ # < 3, True, Take[#, -2] != {1, 1}] &], -2], 0], {n, 2, 400}]}, Position[s, 1][[All, 1]] ] (* Michael De Vlieger, Aug 08 2018 *)
-
PARI
entryp(p)=my(k=p+[0, -1, 1, 1, -1][p%5+1], f=factor(k)); for(i=1, #f[, 1],for(j=1, f[i, 2], if((Mod([1, 1; 1, 0], p)^(k/f[i, 1]))[1, 2], break); k/=f[i, 1])); k entry(n)=if(n==1, return(1)); my(f=factor(n), v); v=vector(#f~, i, if(f[i, 1]>1e14, entryp(f[i, 1]^f[i, 2]), entryp(f[i, 1])*f[i, 1]^(f[i, 2]-1))); if(f[1, 1]==2&&f[1, 2]>1, v[1]=3<
Charles R Greathouse IV, Dec 14 2016
Comments