cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A052195 Primes p such that p, p+30, p+60 are consecutive primes.

Original entry on oeis.org

69593, 110651, 134609, 228647, 237791, 250889, 303157, 318919, 396449, 421913, 498271, 507431, 535243, 554317, 629623, 642427, 642457, 668243, 692161, 716003, 729791, 780523, 782581, 790897, 801217, 825131, 829289, 847393, 892291, 902873, 940097, 942449, 963913, 995243, 1027067
Offset: 1

Views

Author

Labos Elemer, Jan 28 2000

Keywords

Examples

			69593, 69623, 69653 are consecutive primes with equal distance d = 30.
110651, 110681 and 110711 are consecutive primes with equal distance d = 30.
		

Crossrefs

Subsequence of A124596 (primes followed by gap 30).
Cf. A047948 (analog for gap 6), A052188 (gap 12), A052189 (gap 18), A052190 (gap 24), A053075 (a(n) + 30).
Cf. A001223 (gaps), A052243 (quadruplets with gap 30), A033451 (quadruplets with gap 6).

Programs

  • Mathematica
    Select[Partition[Prime[Range[80000]],3,1],Differences[#]=={30,30}&][[All,1]] (* Harvey P. Dale, May 03 2018 *)
  • PARI
    vecextract(A124596, select(t->t==30, A124596[^1]-A124596[^-1],1)) \\ Terms of A124596 with indices of first differences of 30. Gives a(1..230) from A124596(1..10^4). - M. F. Hasler, Jan 02 2020

Formula

{ A124596(n) | A124596(n+1) = A124596(n) + 30 }. - M. F. Hasler, Jan 02 2020

A178135 Balanced primes separated from the next lower and next higher prime neighbors by 54.

Original entry on oeis.org

6314447, 7855163, 9715103, 10133467, 10851497, 12820427, 13442537, 14064317, 14172007, 15945437, 18715547, 20208163, 21488263, 22916767, 23924827, 24079357, 25660883, 27099283, 27245627, 27613093, 29162977, 31215643
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[p-Prime[n-1]==Prime[n+1]-p==6*9,AppendTo[lst,p]],{n,9!,10!}];lst
    Select[Partition[Prime[Range[2*10^6]],3,1],Differences[#]=={54,54}&][[All,2]] (* Harvey P. Dale, Jul 07 2020 *)

A178136 Balanced primes separated from the next lower and next higher prime neighbors by 60.

Original entry on oeis.org

4911311, 5309599, 9113323, 11355857, 11397163, 13940117, 14306263, 14313587, 14585149, 17172581, 21126169, 24419341, 24581863, 24861691, 24922351, 25308859, 26241811, 26722583, 27408253, 28740979, 29675197, 30045871
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[p-Prime[n-1]==Prime[n+1]-p==6*10,AppendTo[lst,p]],{n,8!,2*10!}];lst
Showing 1-3 of 3 results.