cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053113 Expansion of (-1 + 1/(1-10*x)^10)/(100*x); related to A053109.

Original entry on oeis.org

1, 55, 2200, 71500, 2002000, 50050000, 1144000000, 24310000000, 486200000000, 9237800000000, 167960000000000, 2939300000000000, 49742000000000000, 817190000000000000, 13075040000000000000, 204297500000000000000
Offset: 0

Views

Author

Keywords

Comments

This is the tenth member of the k-family of sequences a(k,n) := k^(n-1)*binomial(n+k,k-1) starting with A000012 (powers of 1), A001792, A036068, A036070, A036083, A036224, A053110-113 for k=1..10.

Programs

  • Magma
    [10^(n-1)*Binomial(n+10, 9): n in [0..30]]; // G. C. Greubel, Aug 16 2018
  • Mathematica
    Table[10^(n - 1)*Binomial[n + 10, 9], {n, 0, 30}] (* G. C. Greubel, Aug 16 2018 *)
    LinearRecurrence[{100,-4500,120000,-2100000,25200000,-210000000,1200000000,-4500000000,10000000000,-10000000000},{1,55,2200,71500,2002000,50050000,1144000000,24310000000,486200000000,9237800000000},20] (* Harvey P. Dale, Jul 30 2025 *)
  • PARI
    vector(30,n,n--; 10^(n-1)*binomial(n+10, 9)) \\ G. C. Greubel, Aug 16 2018
    

Formula

a(n) = 10^(n-1)*binomial(n+10, 9).
G.f.: (-1 + (1-10*x)^(-10))/(x*10^2).