A053114 a(n) = ((8*n+9)(!^8))/9, related to A045755 ((8*n+1)(!^8) octo- or 8-factorials).
1, 17, 425, 14025, 575025, 28176225, 1606044825, 104392913625, 7620682694625, 617275298264625, 54937501545551625, 5328937649918507625, 559538453241443300625, 63227845216283092970625
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..332
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-8*x)^(17/8))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 16 2018 -
Mathematica
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 16, 5!, 8}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *) With[{nn = 30}, CoefficientList[Series[1/(1 - 8*x)^(17/8), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 16 2018 *)
-
PARI
x='x+O('x^30); Vec(serlaplace(1/(1-8*x)^(17/8))) \\ G. C. Greubel, Aug 16 2018
Formula
a(n) = ((8*n+9)(!^8))/9(!^8) = A045755(n+2)/9.
E.g.f.: 1/(1-8*x)^(17/8).
G.f.: 1/(1-17x/(1-8x/(1-25x/(1-16x/(1-33x/(1-24x/(1-41x/(1-32x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2012
Comments