A053115 a(n) = ((8*n+10)(!^8))/20, related to A034908 ((8*n+2)(!^8) octo- or 8-factorials).
1, 18, 468, 15912, 668304, 33415200, 1938081600, 127913385600, 9465590534400, 776178423820800, 69856058143872000, 6845893698099456000, 725664731998542336000, 82725779447833826304000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..332
Programs
-
Magma
m:=25; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-8*x)^(9/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 26 2018 -
Mathematica
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 17, 5!, 8}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *) With[{nmax = 50}, CoefficientList[Series[1/(1 - 8*x)^(9/4), {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Aug 26 2018 *)
-
PARI
x='x+O('x^25); Vec(serlaplace(1/(1-8*x)^(9/4))) \\ G. C. Greubel, Aug 26 2018
Formula
a(n) = ((8*n+10)(!^8))/10(!^8) = A034908(n+2)/10.
E.g.f.: 1/(1-8*x)^(9/4).
G.f.: 1/(1-18x/(1-8x/(1-26x/(1-16x/(1-34x/(1-24x/(1-42x/(1-32x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2012
Comments