A053118 Triangle of coefficients of Chebyshev's U(n,x) polynomials (exponents in decreasing order).
1, 2, 0, 4, 0, -1, 8, 0, -4, 0, 16, 0, -12, 0, 1, 32, 0, -32, 0, 6, 0, 64, 0, -80, 0, 24, 0, -1, 128, 0, -192, 0, 80, 0, -8, 0, 256, 0, -448, 0, 240, 0, -40, 0, 1, 512, 0, -1024, 0, 672, 0, -160, 0, 10, 0, 1024, 0, -2304, 0, 1792, 0, -560, 0, 60, 0, -1, 2048, 0, -5120, 0, 4608, 0, -1792, 0, 280, 0, -12, 0, 4096, 0, -11264, 0, 11520, 0, -5376
Offset: 0
Examples
1; 2,0; 4,0,-1; 8,0,-4,0; 16,0,-12,0,1; ... E.g. fourth row (n=3) {8,0,-4,0} corresponds to polynomial U(3,x)= 8*x^3-4*x.
References
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
Links
Crossrefs
Programs
-
Mathematica
Flatten[ Table[ Reverse[ CoefficientList[ ChebyshevU[n, x], x]], {n, 0, 12}]] (* Jean-François Alcover, Jan 20 2012 *)
Formula
a(n, m) := 0 if n= 0 is even else 0.
Comments