cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A053117 Triangle read by rows of coefficients of Chebyshev's U(n,x) polynomials (exponents in increasing order).

Original entry on oeis.org

1, 0, 2, -1, 0, 4, 0, -4, 0, 8, 1, 0, -12, 0, 16, 0, 6, 0, -32, 0, 32, -1, 0, 24, 0, -80, 0, 64, 0, -8, 0, 80, 0, -192, 0, 128, 1, 0, -40, 0, 240, 0, -448, 0, 256, 0, 10, 0, -160, 0, 672, 0, -1024, 0, 512, -1, 0, 60, 0, -560, 0, 1792, 0, -2304, 0, 1024, 0, -12, 0, 280, 0, -1792, 0, 4608, 0, -5120, 0, 2048, 1, 0, -84, 0, 1120, 0, -5376, 0, 11520, 0, -11264, 0, 4096
Offset: 0

Views

Author

Keywords

Comments

G.f. for row polynomials U(n,x) (signed triangle): 1/(1-2*x*z+z^2). Unsigned triangle |a(n,m)| has Fibonacci polynomials F(n+1,2*x) as row polynomials with g.f. 1/(1-2*x*z-z^2).
Row sums (unsigned triangle) A000129(n+1) (Pell). Row sums (signed triangle) A000027(n+1) (natural numbers).
The o.g.f. for the Legendre polynomials L(n,x) is 1 / sqrt(1- 2x*z + z^2), and squaring it gives the o.g.f. of this entry, so Sum_{k=0..n} L(k,x) L(n-k,x) = U(n,x). This reduces to U(n,x) = L(n/2,x)^2 + 2*Sum_{k=0...n/2-1} L(k,x) L(n-k,x) for n even and U(n,x) = 2*Sum_{k=0..(n-1)/2} L(k,x) L(n-k.x) for odd n. (Cf. also Allouche et al.) For a connection through the Legendre polynomials to elliptic curves and modular forms, see the MathOverflow question below. For the normalized Legendre polynomials, see A100258. (Cf. A097610 with h1 = -2x and h2 = 1, A207538, A099089 and A133156.) - Tom Copeland, Feb 04 2016
The compositional inverse of the shifted o.g.f. x / (1 + 2xz + z^2) for differently signed row polynomials of this entry is the shifted o.g.f. of A121448. The unsigned, non-vanishing antidiagonals (top to bottom) of this triangle are the rows of A038207. - Tom Copeland, Feb 08 2016

Examples

			Triangle begins:
   1;
   0,  2;
  -1,  0,   4;
   0, -4,   0, 8;
   1,  0, -12, 0, 16;
  ...
E.g., fourth row (n=3) {0,-4,0,8} corresponds to polynomial U(3,x) = -4*x + 8*x^3.
		

References

  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 22, page 196.

Crossrefs

Programs

  • Julia
    using Nemo
    function A053117Row(n)
        R, x = PolynomialRing(ZZ, "x")
        p = chebyshev_u(n, x)
        [coeff(p, j) for j in 0:n] end
    for n in 0:6 A053117Row(n) |> println end # Peter Luschny, Mar 13 2018
  • Maple
    seq(seq(coeff(orthopoly[U](n,x),x,j),j=0..n),n=0..16); # Robert Israel, Feb 09 2016
  • Mathematica
    Flatten[ Table[ CoefficientList[ ChebyshevU[n, x], x], {n, 0, 12}]](* Jean-François Alcover, Nov 24 2011 *)
  • PARI
    T(n, k) = polcoeff(polchebyshev(n,2), k); \\ Michel Marcus, Feb 10 2016
    

Formula

a(n, m) = (2^m)*A049310(n,m).
a(n, m) := 0 if n
If n and k are of the same parity then a(n,k)=(-1)^((n-k)/2)*sum(binomial((n+k)/2,i)*binomial((n+k)/2-i,(n-k)/2),i=0..k) and a(n,k)=0 otherwise. - Milan Janjic, Apr 13 2008

A008312 Triangle of coefficients of Chebyshev polynomials U_n(x).

Original entry on oeis.org

1, 2, -1, 4, -4, 8, 1, -12, 16, 6, -32, 32, -1, 24, -80, 64, -8, 80, -192, 128, 1, -40, 240, -448, 256, 10, -160, 672, -1024, 512, -1, 60, -560, 1792, -2304, 1024, -12, 280, -1792, 4608, -5120, 2048
Offset: 0

Keywords

Comments

Version with zeros in A053117. - Philippe Deléham, Nov 27 2013

Examples

			From _Philippe Deléham_, Nov 27 2013: (Start)
Triangle begins:
    1;
    2;
   -1,    4;
   -4,    8;
    1,  -12,    16;
    6,  -32,    32;
   -1,   24,   -80,    64;
   -8,   80,  -192,   128;
    1,  -40,   240,  -448,   256;
   10, -160,   672, -1024,   512;
   -1,   60,  -560,  1792, -2304, 1024;
  -12,  280, -1792,  4608, -5120, 2048;
  ...
With zeros, triangle begins:
   1;
   0,   2;
  -1,   0,   4;
   0,  -4,   0,    8;
   1,   0, -12,    0,   16;
   0,   6,   0,  -32,    0,    32;
  -1,   0,  24,    0,  -80,     0,   64;
   0,  -8,   0,   80,    0,  -192,    0,   128;
   1,   0, -40,    0,  240,     0, -448,     0,   256;
   0,  10,   0, -160,    0,   672,    0, -1024,     0,   512;
  -1,   0,  60,    0, -560,     0, 1792,     0, -2304,     0, 1024;
   0, -12,   0,  280,    0, -1792,    0,  4608,     0, -5120,    0, 2048;
  ...
(End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.

Crossrefs

Reflected version with zeros: A053118. Cf. A008310, A053112, A053117.

Programs

  • Mathematica
    a[n_, k_] := Coefficient[ ChebyshevU[n, x], x, k]; row[n_] := Table[a[n, k], {k, Mod[n, 2], n, 2}]; Table[row[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Oct 03 2012 *)

A099089 Riordan array (1, 2+x).

Original entry on oeis.org

1, 0, 2, 0, 1, 4, 0, 0, 4, 8, 0, 0, 1, 12, 16, 0, 0, 0, 6, 32, 32, 0, 0, 0, 1, 24, 80, 64, 0, 0, 0, 0, 8, 80, 192, 128, 0, 0, 0, 0, 1, 40, 240, 448, 256, 0, 0, 0, 0, 0, 10, 160, 672, 1024, 512, 0, 0, 0, 0, 0, 1, 60, 560, 1792, 2304, 1024, 0, 0, 0, 0, 0, 0, 12, 280, 1792, 4608, 5120, 2048
Offset: 0

Author

Paul Barry, Sep 25 2004

Keywords

Comments

Row sums are A000129. Diagonal sums are A008346. The Riordan array (1, s+tx) defines T(n,k) = binomial(k,n-k)*s^k*(t/s)^(n-k). The row sums satisfy a(n) = s*a(n-1) + t*a(n-2) and the diagonal sums satisfy a(n) = s*a(n-2) + t*a(n-3).
Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1/2, -1/2, 0, 0, 0, 0, ...] DELTA [2, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 10 2008
As an upper right triangle (in the example), table rows give number of points, edges, faces, cubes, 4D hypercubes etc. in hypercubes of increasing dimension by column. - Henry Bottomley, Apr 14 2000. More precisely, the (i,j)-th entry is the number of j-dimensional subspaces of an i-dimensional hypercube (see the Coxeter reference). - Christof Weber, May 08 2009

Examples

			Triangle begins:
  1;
  0,  2;
  0,  1,  4;
  0,  0,  4,  8;
  0,  0,  1, 12, 16;
  0,  0,  0,  6, 32, 32;
  0,  0,  0,  1, 24, 80, 64;
The entries can also be interpreted as the antidiagonal reading of the following array:
  1,    2,    4,    8,   16,   32,   64,  128,  256,  512, 1024,... A000079
  0,    1,    4,   12,   32,   80,  192,  448, 1024, 2304, 5120,... A001787
  0,    0,    1,    6,   24,   80,  240,  672, 1792, 4608,11520,... A001788
  0,    0,    0,    1,    8,   40,  160,  560, 1792, 5376,15360,... A001789
  0,    0,    0,    0,    1,   10,   60,  280, 1120, 4032,13440,...
  0,    0,    0,    0,    0,    1,   12,   84,  448, 2016, 8064,...
  0,    0,    0,    0,    0,    0,    1,   14,  112,  672, 3360,...
  0,    0,    0,    0,    0,    0,    0,    1,   16,  144,  960,...
  0,    0,    0,    0,    0,    0,    0,    0,    1,   18,  180,...
  0,    0,    0,    0,    0,    0,    0,    0,    0,    1,   20,...
  0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    1,...
		

References

  • H. S. M. Coxeter, Regular Polytopes, Dover Publications, New York (1973), p. 122.

Crossrefs

Formula

Number triangle T(n,k) = binomial(k, n-k)*2^k*(1/2)^(n-k); columns have g.f. (2*x+x^2)^k.
G.f.: 1/(1-2y*x-y*x^2). - Philippe Deléham, Nov 20 2011
Sum_ {k=0..n} T(n,k)*x^k = A000007(n), A000129(n+1), A090017(n+1), A090018(n), A190510(n+1), A190955(n+1) for x = 0,1,2,3,4,5 respectively. - Philippe Deléham, Nov 20 2011
T(n,k) = 2*T(n-1,k-1) + T(n-2,k-1), T(0,0) = 1, T(1,0) = T(2,0) = 0, T(1,1) = 2, T(2,1) = 1, T(2,2) = 4, T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Oct 30 2013
Showing 1-3 of 3 results.