cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053126 Binomial coefficients binomial(2*n-3,4).

Original entry on oeis.org

5, 35, 126, 330, 715, 1365, 2380, 3876, 5985, 8855, 12650, 17550, 23751, 31465, 40920, 52360, 66045, 82251, 101270, 123410, 148995, 178365, 211876, 249900, 292825, 341055, 395010, 455126, 521855, 595665, 677040, 766480
Offset: 4

Views

Author

Keywords

Comments

Number of intersections of diagonals in the interior of regular (2n-3)-gon. - Philippe Deléham, Jun 07 2013

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).

Crossrefs

Programs

  • Magma
    [Binomial(2*n-3,4): n in [4..40]]; // Vincenzo Librandi, Oct 07 2011
    
  • Mathematica
    Table[Binomial[2*n-3,4], {n,4,50}] (* G. C. Greubel, Aug 26 2018 *)
  • PARI
    for(n=4,50, print1(binomial(2*n-3,4), ", ")) \\ G. C. Greubel, Aug 26 2018

Formula

a(n) = binomial(2*n-3, 4) if n >= 4 else 0;
G.f.: (5+10*x+x^2)/(1-x)^5.
a(n) = A053123(n,4), n >= 4; a(n) = 0, n=0..3 (fifth column of shifted Chebyshev's S-triangle, decreasing order).
a(n) = A006561(2n-3). - Philippe Deléham, Jun 07 2013
E.g.f.: (90 - 84*x + 39*x^2 - 12*x^3 + 4*x^4)*exp(x)/6. - G. C. Greubel, Aug 26 2018
From Amiram Eldar, Jan 04 2022: (Start)
Sum_{n>=4} 1/a(n) = 34/3 - 16*log(2).
Sum_{n>=4} (-1)^n/a(n) = 2*Pi - 4*log(2) - 10/3. (End)