cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053130 Binomial coefficients C(2*n-7,8).

Original entry on oeis.org

9, 165, 1287, 6435, 24310, 75582, 203490, 490314, 1081575, 2220075, 4292145, 7888725, 13884156, 23535820, 38608020, 61523748, 95548245, 145008513, 215553195, 314457495, 450978066, 636763050, 886322710, 1217566350, 1652411475, 2217471399, 2944827765, 3872894697
Offset: 8

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).

Crossrefs

Programs

  • Magma
    [Binomial(2*n-7, 8): n in [8..50]]; // Vincenzo Librandi, Apr 07 2011
    
  • Mathematica
    Table[Binomial[2*n-7,8], {n,8,50}] (* G. C. Greubel, Aug 26 2018 *)
  • PARI
    for(n=8,50, print1(binomial(2*n-7,8), ", ")) \\ G. C. Greubel, Aug 26 2018

Formula

a(n) = binomial(2*n-7, 8) if n >= 8 else 0.
G.f.: (9+84*x+126*x^2+36*x^3+x^4)/(1-x)^9.
a(n) = A053123(n,8), n >= 8; a(n) := 0, n=0..7, (ninth column of shifted Chebyshev's S-triangle, decreasing order).
From Amiram Eldar, Oct 21 2022: (Start)
Sum_{n>=8} 1/a(n) = 37276/105 - 512*log(2).
Sum_{n>=8} (-1)^n/a(n) = 592/21 - 16*Pi + 32*log(2). (End)