A053130 Binomial coefficients C(2*n-7,8).
9, 165, 1287, 6435, 24310, 75582, 203490, 490314, 1081575, 2220075, 4292145, 7888725, 13884156, 23535820, 38608020, 61523748, 95548245, 145008513, 215553195, 314457495, 450978066, 636763050, 886322710, 1217566350, 1652411475, 2217471399, 2944827765, 3872894697
Offset: 8
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 8..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Milan Janjić, Two Enumerative Functions
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
- Index entries for sequences related to Chebyshev polynomials.
Programs
-
Magma
[Binomial(2*n-7, 8): n in [8..50]]; // Vincenzo Librandi, Apr 07 2011
-
Mathematica
Table[Binomial[2*n-7,8], {n,8,50}] (* G. C. Greubel, Aug 26 2018 *)
-
PARI
for(n=8,50, print1(binomial(2*n-7,8), ", ")) \\ G. C. Greubel, Aug 26 2018
Formula
a(n) = binomial(2*n-7, 8) if n >= 8 else 0.
G.f.: (9+84*x+126*x^2+36*x^3+x^4)/(1-x)^9.
a(n) = A053123(n,8), n >= 8; a(n) := 0, n=0..7, (ninth column of shifted Chebyshev's S-triangle, decreasing order).
From Amiram Eldar, Oct 21 2022: (Start)
Sum_{n>=8} 1/a(n) = 37276/105 - 512*log(2).
Sum_{n>=8} (-1)^n/a(n) = 592/21 - 16*Pi + 32*log(2). (End)