A129479 Triangle read by rows: A054523 * A097806 as infinite lower triangular matrices.
1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 4, 0, 0, 1, 1, 4, 3, 1, 0, 1, 1, 6, 0, 0, 0, 0, 1, 1, 6, 2, 1, 1, 0, 0, 1, 1, 6, 2, 2, 0, 0, 0, 0, 1, 1, 8, 4, 0, 1, 1, 0, 0, 0, 1, 1, 10, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 6, 4, 4, 2, 1, 1, 0, 0, 0, 0, 1, 1, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 1
Examples
First few rows of the triangle: 1; 2, 1; 2, 1, 1; 3, 1, 1, 1; 4, 0, 0, 1, 1; 4, 3, 1, 0, 1, 1; 6, 0, 0, 0, 0, 1, 1; 6, 2, 1, 1, 0, 0, 1, 1; ...
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
A054523:= func< n,k | n eq 1 select 1 else (n mod k) eq 0 select EulerPhi(Floor(n/k)) else 0 >; A129479:= func< n,k | k le n-1 select A054523(n,k) + A054523(n,k+1) else 1 >; [A129479(n,k): k in [1..n], n in [1..16]]; // G. C. Greubel, Feb 11 2024
-
Mathematica
A054523[n_, k_]:= If[n==1, 1, If[Divisible[n,k], EulerPhi[n/k], 0]]; T[n_, k_]:= If[k
A054523[n, j+k], {j,0,1}], 1]; Table[T[n,k],{n,16},{k,n}]//Flatten (* G. C. Greubel, Feb 11 2024 *) -
SageMath
def A054523(n,k): if (k==n): return 1 elif (n%k): return 0 else: return euler_phi(n//k) def A129479(n, k): if k<0 or k>n: return 0 elif k==n: return 1 else: return A054523(n,k) + A054523(n,k+1) flatten([[A129479(n, k) for k in range(1,n+1)] for n in range(1,17)]) # G. C. Greubel, Feb 11 2024