cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053188 Distance from n to nearest square.

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 2, 2, 1, 0, 1, 2, 3, 3, 2, 1, 0, 1, 2, 3, 4, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4
Offset: 0

Views

Author

Henry Bottomley, Mar 01 2000

Keywords

Examples

			a(7)=2 since 9 is the closest square to 7 and |9-7| = 2.
		

Crossrefs

Programs

  • Haskell
    a053188 0 = 0
    a053188 n = min (n - last xs) (head ys - n) where
       (xs,ys) = span (< n) a000290_list
    -- Reinhard Zumkeller, Nov 28 2011
    
  • Mathematica
    Flatten[Table[Abs[Nearest[Range[0,25]^2,n]-n],{n,0,120}]]  (* Harvey P. Dale, Mar 14 2011 *)
  • PARI
    a(n)=abs(((sqrtint(4*n) + 1)\2)^2 - n) \\ Charles R Greathouse IV, Nov 16 2022
  • Python
    from math import isqrt
    def A053188(n): return abs(((m:=isqrt(n))+int(n-m*(m+1)>=1))**2-n) # Chai Wah Wu, Aug 03 2022
    

Formula

a(n) = |floor(sqrt(n) + 1/2)^2 - n|. - Ridouane Oudra, May 01 2019
a(n) <= sqrt(n). - Charles R Greathouse IV, Nov 16 2022