A053197 Number of level partitions of n.
1, 1, 2, 2, 4, 3, 6, 5, 10, 8, 13, 12, 21, 18, 27, 27, 42, 38, 54, 54, 77, 76, 101, 104, 143, 142, 183, 192, 249, 256, 323, 340, 432, 448, 550, 585, 722, 760, 918, 982, 1190, 1260, 1502, 1610, 1917, 2048, 2408, 2590, 3053, 3264, 3800, 4097, 4765, 5120, 5910, 6378
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-p, p), j=0..n/i))) end: a:= n-> (m-> `if`(n=0, 1, add(b(n, (h-> h-1+irem(h, 2) )(iquo(n, 2^j))*2^j, 2^(1+j)), j=0..m)))(ilog2(n)): seq(a(n), n=0..60); # Alois P. Heinz, Jun 11 2015
-
Mathematica
a[n_] := Sum[ PartitionsQ[n/2^k], {k, 0, IntegerExponent[n, 2]}]; Table[ a[n], {n, 1, 55}] (* Jean-François Alcover, Dec 12 2011, after Vladeta Jovovic *)
Formula
a(n) = Sum_{k=0..A007814(n)} A000009(n/2^k). a(2*n+1) = A000009(2*n+1) = A078408(n). - Vladeta Jovovic, Sep 29 2004
Extensions
a(0)=1 prepended by Alois P. Heinz, Jun 11 2015
Comments