A053295 Partial sums of A053739.
1, 7, 29, 92, 247, 591, 1300, 2683, 5270, 9955, 18228, 32551, 56967, 98086, 166681, 280271, 467301, 773906, 1274856, 2091266, 3419252, 5576298, 9076280, 14750858, 23945893, 38839257, 62955061, 101995694
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-20,29,-20,1,8,-5,1).
Programs
-
Magma
[(&+[Binomial(n+6-j, n-2*j): j in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, May 24 2018
-
Mathematica
Table[Sum[Binomial[n+6-j, n-2*j], {j, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, May 24 2018 *)
-
PARI
for(n=0, 30, print1(sum(j=0, floor(n/2), binomial(n+6-j, n-2*j)), ", ")) \\ G. C. Greubel, May 24 2018
Formula
a(n) = Sum_{i=0..floor(n/2)} C(n+6-i, n-2i), n >= 0.
a(n) = a(n-1) + a(n-2) + C(n+5,5); n >= 0; a(-1)=0.
G.f.: -1 / ( (x^2 + x - 1)*(x-1)^6 ). - R. J. Mathar, Oct 10 2014