A053296 Partial sums of A053295.
1, 8, 37, 129, 376, 967, 2267, 4950, 10220, 20175, 38403, 70954, 127921, 226007, 392688, 672959, 1140260, 1914166, 3189022, 5280288, 8699540, 14275838, 23352118, 38102976, 62048869, 100888126, 163843187, 265838881, 431026972, 698489013, 1131463777, 1832277574, 2966502032, 4802042229
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-27,49,-49,21,7,-13,6,-1).
Crossrefs
Programs
-
Magma
[(&+[Binomial(n+7-j, n-2*j): j in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, May 24 2018
-
Mathematica
Table[Sum[Binomial[n+7-j, n-2*j], {j, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, May 24 2018 *)
-
PARI
for(n=0, 30, print1(sum(j=0, floor(n/2), binomial(n+7-j, n-2*j)), ", ")) \\ G. C. Greubel, May 24 2018
Formula
a(n) = Sum_{i=0..floor(n/2)} C(n+7-i, n-2i), n >= 0.
a(n) = a(n-1) + a(n-2) + C(n+6,6); n >= 0, with a(-1) = 0.
From G. C. Greubel, Oct 21 2024: (Start)
a(n) = Fibonacci(n+15) - Sum_{j=0..6} Fibonacci(14-2*j)*binomial(n+j,j).
a(n) = Fibonacci(n+15) - (1/6!)*(n^6 + 39*n^5 + 685*n^4 + 7185*n^3 + 48994*n^2 + 209496*n + 438480).
G.f.: 1/((1-x)^7*(1 - x - x^2)). (End)
Extensions
Terms a(28) onward added by G. C. Greubel, May 24 2018