A053308 Partial sums of A053296.
1, 9, 46, 175, 551, 1518, 3785, 8735, 18955, 39130, 77533, 148487, 276408, 502415, 895103, 1568062, 2708322, 4622488, 7811510, 13091798, 21791338, 36067176, 59419294, 97522270, 159571139, 260459265, 424302452, 690141333
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-35,76,-98,70,-14,-20,19,-7,1).
Programs
-
Magma
[(&+[Binomial(n+8-j, n-2*j): j in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, May 24 2018
-
Mathematica
Table[Sum[Binomial[n+8-j, n-2j], {j, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, May 24 2018 *)
-
PARI
for(n=0, 30, print1(sum(j=0, floor(n/2), binomial(n+8-j, n-2*j)), ", ")) \\ G. C. Greubel, May 24 2018
Formula
a(n) = Sum_{i=0..floor(n/2)} C(n+8-i, n-2i), n >= 0.
a(n) = a(n-1) + a(n-2) + C(n+7,7); n >= 0; a(-1)=0.