cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053309 Partial sums of A053308.

Original entry on oeis.org

1, 10, 56, 231, 782, 2300, 6085, 14820, 33775, 72905, 150438, 298925, 575333, 1077748, 1972851, 3540913, 6249235, 10871723, 18683233, 31775031, 53566369, 89633545, 149052839, 246575109, 406146248, 666605513, 1090907965
Offset: 0

Views

Author

Barry E. Williams, Mar 06 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n+9-j, n-2*j): j in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, May 24 2018
  • Mathematica
    Table[Sum[Binomial[n+9-j, n-2j], {j, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, May 24 2018 *)
  • PARI
    for(n=0, 30, print1(sum(j=0, floor(n/2), binomial(n+9-j, n-2*j)), ", ")) \\ G. C. Greubel, May 24 2018
    

Formula

a(n) = Sum_{i=0..floor(n/2)} C(n+9-i, n-2i), n >= 0.
a(n) = a(n-1) + a(n-2) + C(n+8,8); n >= 0; a(-1)=0.
G.f.: 1/((x^2 + x - 1)*(x-1)^9). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009