cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053311 Partial sums of A000285.

Original entry on oeis.org

1, 5, 10, 19, 33, 56, 93, 153, 250, 407, 661, 1072, 1737, 2813, 4554, 7371, 11929, 19304, 31237, 50545, 81786, 132335, 214125, 346464, 560593, 907061, 1467658, 2374723, 3842385, 6217112, 10059501, 16276617, 26336122
Offset: 0

Views

Author

Barry E. Williams, Mar 06 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., pp. 189, 194-196.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 224.

Crossrefs

Cf. A000285.
a(n) = A101220(4, 1, n+1).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+3*x)/((x-1)*(x^2+x-1)))); // G. C. Greubel, May 24 2018
  • Mathematica
    CoefficientList[Series[(1+3*x)/((x-1)*(x^2+x-1)), {x, 0, 50}], x] (* G. C. Greubel, May 24 2018 *)
  • PARI
    x='x+O('x^30); Vec((1+3*x)/((x-1)*(x^2+x-1))) \\ G. C. Greubel, May 24 2018
    

Formula

a(n) = a(n-1) + a(n-2) + 4; a(0)=1, a(1)=5; n >= 1.
a(n) = 4*F(n+2) + F(n+1) - 4, where F(k) is A000045(k).
From R. J. Mathar, Apr 29 2013: (Start)
G.f.: ( 1+3*x ) / ( (x-1)*(x^2+x-1) ).
a(n) = A000071(n+3) + 3*A000071(n+2) = A000285(n+2) - 4. (End)