A053311 Partial sums of A000285.
1, 5, 10, 19, 33, 56, 93, 153, 250, 407, 661, 1072, 1737, 2813, 4554, 7371, 11929, 19304, 31237, 50545, 81786, 132335, 214125, 346464, 560593, 907061, 1467658, 2374723, 3842385, 6217112, 10059501, 16276617, 26336122
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., pp. 189, 194-196.
- J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 224.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1).
Programs
-
Magma
m:=25; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+3*x)/((x-1)*(x^2+x-1)))); // G. C. Greubel, May 24 2018 -
Mathematica
CoefficientList[Series[(1+3*x)/((x-1)*(x^2+x-1)), {x, 0, 50}], x] (* G. C. Greubel, May 24 2018 *)
-
PARI
x='x+O('x^30); Vec((1+3*x)/((x-1)*(x^2+x-1))) \\ G. C. Greubel, May 24 2018
Formula
a(n) = a(n-1) + a(n-2) + 4; a(0)=1, a(1)=5; n >= 1.
a(n) = 4*F(n+2) + F(n+1) - 4, where F(k) is A000045(k).
From R. J. Mathar, Apr 29 2013: (Start)
G.f.: ( 1+3*x ) / ( (x-1)*(x^2+x-1) ).