cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053367 Partial sums of A050494.

Original entry on oeis.org

1, 11, 63, 255, 825, 2277, 5577, 12441, 25740, 50050, 92378, 163098, 277134, 455430, 726750, 1129854, 1716099, 2552517, 3725425, 5344625, 7548255, 10508355, 14437215, 19594575, 26295750, 34920756, 45924516, 59848228, 77331980, 99128700, 126119532, 159330732, 199952181, 249357615
Offset: 0

Views

Author

Barry E. Williams, Jan 06 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Cf. A050494.
Cf. A093560 ((3, 1) Pascal, column m=8).

Programs

  • Magma
    [(3*n+8)*Binomial(n+7,7)/8: n in [0..30]]; // G. C. Greubel, May 25 2018
  • Mathematica
    LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 11, 63, 255, 825, 2277, 5577, 12441, 25740}, 30] (* or *) Table[(3*n+8)* Binomial[n+7,7]/8, {n,0,30}] (* G. C. Greubel, May 25 2018 *)
  • PARI
    a(n)=binomial(n+7, 7)*(3*n+8)/8 \\ Charles R Greathouse IV, Oct 07 2015
    

Formula

a(n) = binomial(n+7, 7)*(3n+8)/8.
G.f.: (1+2*x)/(1-x)^9.

Extensions

Terms a(24) onward added by G. C. Greubel, May 25 2018