A053367 Partial sums of A050494.
1, 11, 63, 255, 825, 2277, 5577, 12441, 25740, 50050, 92378, 163098, 277134, 455430, 726750, 1129854, 1716099, 2552517, 3725425, 5344625, 7548255, 10508355, 14437215, 19594575, 26295750, 34920756, 45924516, 59848228, 77331980, 99128700, 126119532, 159330732, 199952181, 249357615
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Programs
-
Magma
[(3*n+8)*Binomial(n+7,7)/8: n in [0..30]]; // G. C. Greubel, May 25 2018
-
Mathematica
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 11, 63, 255, 825, 2277, 5577, 12441, 25740}, 30] (* or *) Table[(3*n+8)* Binomial[n+7,7]/8, {n,0,30}] (* G. C. Greubel, May 25 2018 *)
-
PARI
a(n)=binomial(n+7, 7)*(3*n+8)/8 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = binomial(n+7, 7)*(3n+8)/8.
G.f.: (1+2*x)/(1-x)^9.
Extensions
Terms a(24) onward added by G. C. Greubel, May 25 2018