A053368 a(n) = (5n+2)*C(n) where C(n) = Catalan numbers (A000108).
2, 7, 24, 85, 308, 1134, 4224, 15873, 60060, 228514, 873392, 3350802, 12896744, 49774300, 192559680, 746503065, 2899328940, 11279096730, 43942760400, 171424529430, 669540282840, 2617890571140, 10246047127680, 40137974797050, 157368305973528, 617467192984404, 2424490605524064
Offset: 0
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
[((5*n+2)/(n+1))*Binomial(2*n,n): n in [0..30]]; // G. C. Greubel, May 25 2018
-
Mathematica
Table[(5*n + 2)*CatalanNumber[n], {n, 0, 50}] (* G. C. Greubel, May 25 2018 *)
-
PARI
for(n=0,30, print1(((5*n+2)/(n+1))*binomial(2*n,n), ", ")) \\ G. C. Greubel, May 25 2018
Formula
From R. J. Mathar, Feb 13 2015: (Start)
3*(n+1)*a(n) + 2*(-7*n-2)*a(n-1) + 4*(2*n-3)*a(n-2) = 0.
-(n+1)*(5*n-3)*a(n) + 2*(5*n+2)*(2*n-1)*a(n-1) = 0. (End)
G.f.: (3 - 2*x - 3*sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)). - Amiram Eldar, Jul 08 2023
Extensions
Terms a(21) onward added by G. C. Greubel, May 25 2018