cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053368 a(n) = (5n+2)*C(n) where C(n) = Catalan numbers (A000108).

Original entry on oeis.org

2, 7, 24, 85, 308, 1134, 4224, 15873, 60060, 228514, 873392, 3350802, 12896744, 49774300, 192559680, 746503065, 2899328940, 11279096730, 43942760400, 171424529430, 669540282840, 2617890571140, 10246047127680, 40137974797050, 157368305973528, 617467192984404, 2424490605524064
Offset: 0

Views

Author

Barry E. Williams, Jan 06 2000

Keywords

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

  • Magma
    [((5*n+2)/(n+1))*Binomial(2*n,n): n in [0..30]]; // G. C. Greubel, May 25 2018
  • Mathematica
    Table[(5*n + 2)*CatalanNumber[n], {n, 0, 50}] (* G. C. Greubel, May 25 2018 *)
  • PARI
    for(n=0,30, print1(((5*n+2)/(n+1))*binomial(2*n,n), ", ")) \\ G. C. Greubel, May 25 2018
    

Formula

From R. J. Mathar, Feb 13 2015: (Start)
3*(n+1)*a(n) + 2*(-7*n-2)*a(n-1) + 4*(2*n-3)*a(n-2) = 0.
-(n+1)*(5*n-3)*a(n) + 2*(5*n+2)*(2*n-1)*a(n-1) = 0. (End)
G.f.: (3 - 2*x - 3*sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)). - Amiram Eldar, Jul 08 2023

Extensions

Terms a(21) onward added by G. C. Greubel, May 25 2018