A053420 Number of 4-multigraphs on n nodes.
1, 5, 35, 900, 90005, 43571400, 95277592625, 925609100039625, 40119721052610123750, 7833164300852979350336250, 6953552738579427778531249187500, 28293472829338822230349054996265275000, 531350037528849507720092485196308155336875000
Offset: 1
References
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..50
- Harald Fripertinger, The cycle type of the induced action on 2-subsets
- Vladeta Jovovic, Formulae for the number T(n,k) of n-multigraphs on k nodes
Programs
-
Python
from itertools import combinations from math import prod, gcd, factorial from fractions import Fraction from sympy.utilities.iterables import partitions def A053420(n): return int(sum(Fraction(5**(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))+sum((q>>1)*r+(q*r*(r-1)>>1) for q, r in p.items())),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 09 2024
Extensions
Terms a(12) and beyond from Andrew Howroyd, Oct 22 2017