cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053443 x^2 + y^2 does not take on all possible values mod n.

Original entry on oeis.org

4, 8, 9, 12, 16, 18, 20, 24, 27, 28, 32, 36, 40, 44, 45, 48, 49, 52, 54, 56, 60, 63, 64, 68, 72, 76, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 104, 108, 112, 116, 117, 120, 121, 124, 126, 128, 132, 135, 136, 140, 144, 147, 148, 152, 153, 156, 160, 162, 164, 168, 171
Offset: 1

Views

Author

Keywords

Comments

Sequence gives values of n such there is not always a solution 1 < z < n to x^2 + y^2 = z (mod n). - Benoit Cloitre, Jan 04 2002; corrected by Carmine Suriano, Jun 19 2013
The asymptotic density of this sequence is 1- 3/(8*K^2) = 1 - (3/4) * A243379 = 0.35791..., where K is the Landau-Ramanujan constant (A064533). - Amiram Eldar, Dec 19 2020

Crossrefs

Complement of A240370.

Programs

  • Mathematica
    Select[Range[200], AnyTrue[FactorInteger[#], Mod[First[#1], 4] > 1 && Last[#1] > 1 &] &] (* Amiram Eldar, Dec 19 2020 *)
  • PARI
    is(n)=my(v=vectorsmall(n,i,1));for(x=0,n\2, for(y=0,x, v[(x^2+y^2)%n+1]=0)); vecmax(v) \\ Charles R Greathouse IV, Jun 19 2013
    
  • PARI
    is(n)=forprime(p=2,97,my(o=valuation(n,p));if(o,if(o>1&&p%4>1,return(1));n/=p^o));my(f=factor(n));for(i=1,#f[,1],if(f[i,2]>1&&f[i,1]%4>1,return(1)));0 \\ Charles R Greathouse IV, Jun 19 2013

Formula

n divisible by p^2 where p = 2 or prime p == 3 (mod 4).