cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A004102 Number of signed graphs with n nodes. Also number of 2-multigraphs on n nodes.

Original entry on oeis.org

1, 1, 3, 10, 66, 792, 25506, 2302938, 591901884, 420784762014, 819833163057369, 4382639993148435207, 64588133532185722290294, 2638572375815762804156666529, 300400208094064113266621946833097, 95776892467035669509813163910815022152
Offset: 0

Views

Author

Keywords

Comments

A 2-multigraph is similar to an ordinary graph except there are 0, 1 or 2 edges between any two nodes (self-loops are not allowed).

References

  • F. Harary and R. W. Robinson, Exposition of the enumeration of point-line-signed graphs, pp. 19 - 33 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp.
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A column of A063841.
Cf. A053465.

Programs

  • Mathematica
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i-1}], {i, 2, Length[v]}] + Sum[Quotient[v[[i]], 2], {i, 1, Length[v]}];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    Array[a, 16, 0] (* Jean-François Alcover, Aug 17 2019, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Sep 25 2018
    
  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A004102(n): return int(sum(Fraction(3**(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))+sum((q>>1)*r+(q*r*(r-1)>>1) for q, r in p.items())),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 09 2024

Formula

Euler transform of A053465. - Andrew Howroyd, Sep 25 2018

Extensions

More terms from Vladeta Jovovic, Jan 06 2000
a(0)=1 prepended and a(15) added by Andrew Howroyd, Sep 25 2018

A318590 Number of connected balanced simple signed graphs on n unlabeled nodes.

Original entry on oeis.org

1, 1, 2, 5, 28, 177, 1982, 33997, 1020516, 54570672, 5347070228, 967135763525, 324200029119318, 202046821340636691, 234878262433630160622, 511060736355598412146405, 2088401066728281847415734793, 16079824271822965645002329491423, 233994776259866281916838227225733732
Offset: 0

Views

Author

Andrew Howroyd, Sep 25 2018

Keywords

Crossrefs

Formula

a(2*n+1) = A054921(2*n+1)/2, a(2*n) = (a(n) + A054919(n) + A054921(2*n) - A054921(n))/2.
Inverse Euler transform of A034892.

A320499 Number of connected self-dual signed graphs with n nodes.

Original entry on oeis.org

1, 1, 0, 1, 3, 14, 62, 572, 7409, 163284, 5736443, 342169618, 33534945769, 5442700283638, 1484664946343496, 664513607618098252, 508538464299389501337, 635542752091150346032474, 1374528064543283977151585962, 4842758246111267151697826493193
Offset: 0

Views

Author

N. J. A. Sloane, Oct 26 2018

Keywords

Crossrefs

Cf. A004102 (signed graphs), A004104 (self-dual), A053465 (connected signed graphs).

Programs

Formula

a(2*n-1) = b(2*n-1), a(2*n) = b(2*n) - (A053465(n) - a(n))/2 where b is the Inverse Euler transform of A004104. - Andrew Howroyd, Jan 27 2020

Extensions

Dead sequence restored by Andrew Howroyd, Jan 26 2020
a(0)=1 prepended and terms a(13) and beyond from Andrew Howroyd, Jan 26 2020

A084565 Number of connected switching classes of signed graphs with n nodes.

Original entry on oeis.org

1, 1, 3, 12, 79, 1123, 42065, 4880753, 1674021742, 1612191702946, 4291399235883144, 31570649902282023158, 644451747846907273827686, 36675914469877423648734408329, 5846124500387959287169919356171145
Offset: 1

Views

Author

N. J. A. Sloane, Jul 16 2003

Keywords

Comments

Also, number of unlabeled connected strength 2 Eulerian graphs with n nodes. - Vladeta Jovovic, Mar 14 2009

References

  • Bussemaker, F. C.; Cameron, P. J.; Seidel, J. J.; and Tsaranov, S. V., Tables of signed graphs, Report-WSK 91-01, Eindhoven University of Technology, Department of Mathematics and Computing Science, Eindhoven, 1991, 105 pp. MR: 92g:05001.

Crossrefs

Extensions

Edited by N. J. A. Sloane Apr 05 2009 at the suggestion of Vladeta Jovovic

A320488 Inverse Euler transform of A004104.

Original entry on oeis.org

1, 1, 0, 1, 4, 14, 65, 572, 7434, 163284, 5736792, 342169618, 33534958026, 5442700283638, 1484664947481018, 664513607618098252, 508538464299684269212, 635542752091150346032474, 1374528064543284187245552390, 4842758246111267151697826493193, 29772724415959420224886585241636839
Offset: 0

Views

Author

N. J. A. Sloane, Oct 25 2018

Keywords

Comments

The inverse Euler transform of A004104 does not give the number of connected self-dual signed graphs. The combinatorial interpretation of this sequence is that of either a connected self-dual signed graph or a pair of distinct connected signed graphs which are dual to each other (but not self-dual). - Andrew Howroyd, Jan 26 2020

Crossrefs

Extensions

Definition edited by Andrew Howroyd, Jan 26 2020
Showing 1-5 of 5 results.